Skip to main content
Log in

Biocompatibility of polycaprolactone and hydroxyapatite matrices in vivo

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Biocompatibility of the matrix is one of the major requirements for a functional scaffold. In this study, we carried out an assessment of biocompatibility of a complex matrix composed of polycaprolactone and hydroxyapatite under in vivo conditions by examining the dynamics of cell distribution in the original scaffold, as well as the reactions to the implant by the surrounding tissues. As result of these studies, we found that, upon subcutaneous implantation of polycaprolactone and hydroxyapatite matrix in white rats, reactive changes in the perifocal zone were completely relieved by the 21st day of the experiment. The matrix was actively populated by cells of connective tissue in the period from the 7th to 21st day of the experiment. In turn, we detected intense vascularization of the scaffold starting at the 14th day after implantation. The obtained data indicate a high degree of biocompatibility of a scaffold constructed on the basis of polycaprolactone and hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HA:

hydroxyapatite

PCL:

polycaprolactone

References

  • Dhollander, A.A., Liekens, K., Almqvist, K.F., Verdonk, R., Lambrecht, S., Elewaut, D., Verbruggen, G., and Verdonk, P.C., A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures, Arthroscopy, 2012, vol. 28, pp. 225–233.

    Article  PubMed  Google Scholar 

  • Dorj, B., Won, J.E., Kim, J.H., Choi, S.J., Shin, U.S., and Kim, H.W., Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction, J. Biomed. Mater. Res., 2013, vol. A 101, pp. 1670–1681.

    Google Scholar 

  • Dvir, T., Timko, B.P., Kohane, D.S., and Langer, R., Nanotechnological Strategies for Engineering Complex Tissues, Nat. Nanotechnol., 2011, vol. 6, pp. 13–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grayson, W.L., Martens, T.P., Eng, G.M., Radisic, M., and Vunjak-Novakovic, G., Biomimetic Approach to Tissue Engineering, Semin. Cell Dev. Biol., 2009, vol. 20, pp. 665–673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov, A.N., Norkin, I.A., and Puchin’yan, D.M., The possibilities and perspectives of using scaffold technology for bone regeneration, Tsitologiia, 2014, vol. 56, no. 8, pp. 543–548.

    CAS  PubMed  Google Scholar 

  • Ko, H.F., Sfeir, C., and Kumta, P.N., Novel Synthesis Strategies for Natural Polymer and Composite Biomaterials as Potential Scaffolds for Tissue Engineering, Philos. Trans. Math. Phys. Eng. Sci., 2010, vol. 368, pp. 1981–1997.

    Article  CAS  Google Scholar 

  • Laschke, M.W., Strohe, A., Scheuer, C., Eglin, D., Verrier, S., Alini, M., Pohlemann, T., and Menger, M.D., In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering, Acta Biomater., 2009, vol. 5, pp. 1991–2001.

    Article  CAS  PubMed  Google Scholar 

  • Lotfi, M., Ghasemi, N., Rahimi, S, Vosoughhosseini, S., Saghiri, M.A., and Shahidi, A., Resilon: a comprehensive literature review, J. Dent. Res. Dent. Clin. Dent. Prospects, 2013, vol. 7, pp. 119–130.

    PubMed Central  PubMed  Google Scholar 

  • Martel-Estrada, S.A., Olivas-Armendáriz, I., Martiínez-Pérez, C.A., Hernández, T., Acosta-Gómez, E.I., Chacón-Nava, J.G., Jiménez-Vega, F., and García-Casillas, P.E., Chitosan/poly(DL,lactide-co-glycolide) scaffolds for tissue engineering, J. Mater. Sci. Mater. Med., 2012, vol. 23, pp. 2893–2901.

    Article  CAS  PubMed  Google Scholar 

  • Novochadov, V.V., The problem of management of cell population and remodeling of tissue-engineering scaffolds for the articular cartilage reconstruction, Vestnik Volgograd. Gos. Univ.., 2013, vol. 1, no. 5, pp. 19–28.

    Google Scholar 

  • Santos, S.G., Lamghari, M., Almeida, C.R., Oliveira, M.I., Neves, N., Ribeiro, A.C., Barbosa, J.N., Barros, R., Maciel, J., Martins, M.C., Gonçalves, R.M., and Barbosa, M.A., Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response, Acta Biomater., 2013, vol. 9, pp. 7209–7217.

    Article  CAS  PubMed  Google Scholar 

  • Schagemann, J.C., Chung, H.W., Mrosek, E.H., Stone, J.J., Fitzsimmons, J.S., O’Driscoll, S.W., and Reinholz, G.G., Poly-epsilon-caprolactone/gel hybrid scaffolds for cartilage tissue engineering, Biomed. Mater. Res. A, 2010, vol. 93, pp. 454–463.

    CAS  Google Scholar 

  • Serrano, M.C., Pagani, R., Vallet-Regí, M., Peña, J, Rámila, A., Izquierdo, I., and Portolés, MT., In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts, Biomaterials, 2004, vol. 25, pp. 5603–5611.

    Article  CAS  PubMed  Google Scholar 

  • Seyednejad, H., Gawlitta, D., Kuiper, R.V., de Bruin, A., van Nostrum, C.F., Vermonden, T., Dhert, W.J., and Hennink, W.E., In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly (e-caprolactone), Biomaterials, 2012, vol. 33, pp. 4309–4318.

    Article  CAS  PubMed  Google Scholar 

  • Shor, L., Güçeri, S., Wen, X., Gandhi, M., and Sun, W., Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro, Biomaterials, 2007, vol. 28, pp. 5291–5297.

    Article  CAS  PubMed  Google Scholar 

  • Starikov, V.V. and Rudchenko, S.O., Optimizing the properties of a composite based on hydroxyapatite and chitosan by varying its composition and modes, Visnik Khmel’nitsk. Nats. Un 3 v., 2010, vol. 915, pp. 35–39.

    Google Scholar 

  • Şaşmazel, H., Gümüşderelioğlu, M., Gürplnar, A., and Onur, M.A., Comparison of cellular proliferation on dense and porous PCL scaffolds, Bio-Medical Mater. Engin., 2008, vol. 18, pp. 119–128.

    Google Scholar 

  • Thadavirul, N., Pavasant, P., and Supaphol, P., Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration, Biomater. Sci. Polymer Edition, 2014, vol. 25, pp. 1986–2008.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, A., Liu, S., Woltjen, K., Thomas, B., Meng, G., Hotta, A., Takahashi, K., Ellis, J., Yamanaka, S., and Rancourt, D.E., Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells, Sci. Rep., 2013, vol. 3, p. 1978. doi: 10.1038/srep01978

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ivanov.

Additional information

Original Russian Text © A.N. Ivanov, M.N. Kozadaev, N.V. Bogomolova, O.V. Matveeva, M.D. Puchin’yan, I.A. Norkin, Y.E. Salkovsky, G.P. Lyubun, 2015, published in Tsitologiya, 2015, Vol. 57, No. 4, pp. 278–285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.N., Kozadaev, M.N., Bogomolova, N.V. et al. Biocompatibility of polycaprolactone and hydroxyapatite matrices in vivo. Cell Tiss. Biol. 9, 422–429 (2015). https://doi.org/10.1134/S1990519X15050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15050077

Keywords

Navigation