Skip to main content
Log in

DNA image-fluorimetry of individual human chromosomes

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

A microfluorimetric method has been developed for determination of DNA content in individual human chromosomes. The method is based on a preliminary identification of chromosomes with Hoechst 33258 followed by staining of the chromosomes with Feulgen reaction by using Schiff’s reagent type ethidium bromide-SO2 and then by measuring the fluorescence intensity of the chromosomes by using an image analyzer. The method allows determining the DNA content of individual chromosomes with an accuracy up to 4.5 fg. The DNA content of individual human chromosomes and their p-and q-arms, as well as homologous chromosomes, were measured by using the developed method. It has been shown that the DNA content in chromosomes of the normal human karyotype is unstable and can fluctuate in some chromosomes within 35–40 fg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agafonova, N.A., Ushal, I.E., and Kudryavtsev, B.N., Method of DNA television fluorometry in individual human chromosomes, Tsitologiia, 2002, vol. 44, no. 9, p. 858.

    Google Scholar 

  • Agroskin, L.S. and Papayan, G.V., Tsitofotometriya (Cytophotometry), Leningrad: Nauka, 1977.

    Google Scholar 

  • Antonarakis, S.E., Human genome sequence and variation, in Human Genetics: Problems and Approaches, Berlin: Springer-Verlag, 2010, vol. 2, pp. 31–53.

    Google Scholar 

  • Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., and Zimmer, E., Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes (restriction maps/concerted evolution/unequal crossing-over/natural selection/chromosome abnormalities), Proc. Natl. Acad. Sci. USA, 1980, vol. 77, pp. 7323–7327.

    Article  PubMed  CAS  Google Scholar 

  • Baranov, V.S., Tsitogenetika embrional’nogo razvitiya cheloveka: nauchno-prakticheskie aspekty (Cytogenetics of Human Embryonic Development: Scientific and Practical Aspects), St. Petersburg: N.-L., 2007.

    Google Scholar 

  • Beneke, G., Application of interference microscopy to biological material, in Vvedenie v kolichestvennuyu tsitokhimiyu (Introduction to Quantitative Cytochemistry), Wied, G.L. and Bahr, G.F., Eds., New York: Academic Press, 1966.

    Google Scholar 

  • Bosman, F., Van, Der, Ploeg, M., and Geraedts, J.P.M., Influence of Q and G-banding on the Feulgen-stainability of human metaphase chromosomes, Histochem. J., 1977, vol. 9, pp. 31–33.

    Article  PubMed  CAS  Google Scholar 

  • Brodskii, V.Ya., Results and prospects of quantitative cytochemical studies, in Vvedenie v kolichestvennuyu tsitokhimiyu (Introduction to Quantitative Cytochemistry), Wied, G.L. and Bahr, G.F., Eds., New York: Academic Press, 1966.

    Google Scholar 

  • Chakraborty, B.M., and Chakraborty, R., Variations in the length of human Y chromosome: a statistical study, Acta Anthropogenet., 1984, vol. 8, nos. 3–4, pp. 269–275.

    PubMed  CAS  Google Scholar 

  • de, Carvalho, C.M.B. and Santos, F.R., Human Y-chromosome variation and male dysfunction, J. Mol. Genet. Med., 2005, vol. 1, pp. 63–75.

    Article  PubMed  Google Scholar 

  • Doležel, J., Bartoš, J., Voglmayr, H., and Greihuber, J., Nuclear DNA content and genome size of trout and human, Cytometry A, 2003, vol. 51A, pp. 127–128.

    Article  Google Scholar 

  • Donehower, L., Furlongs, C., Gillespie, D., and Kurnit, D., DNA Sequence of baboon highly repeated DNA: evidence for evolution by nonrandom unequal cross-overs (satellite dna/nucleosome/heterochromatin/primates, Proc. Natl Acad. Sci. USA, 1980, vol. 77, pp. 2129–2133.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, J.L.I., Van, Duiyh, and Schaberg, A., Photometric determination of DNA in human chromosomes, Exp. Cell Res., 1968, vol. 53, pp. 417–431.

    Article  CAS  Google Scholar 

  • Graham, K.A., Richardson, C.L., Minden, M.D., Trent, J.M., and Buick, R.N., Varying degrees of amplification of the N. ras oncogene in the human breast cancer cell line MCF-7, Cancer Res., 1985, vol. 45, pp. 2201–2205.

    PubMed  CAS  Google Scholar 

  • Gregory, T.R., Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma, Biol. Rev. Camb. Philos. Soc., 2001, vol. 76, pp. 65–101.

    Article  PubMed  CAS  Google Scholar 

  • Grinchuk, T.M., Sukhikh, T.R., Sorokina, E.A., Artsybasheva, I.V., Pan’shina, Yu.T., Rozanov, Yu.M., Kudryavtsev, B.N., and Ignatova, T.N., Microfluorimetric estimate of the DNA content of individual chromosomes confirms the cytogenetically detected DNA amplification in structural variants of chromosome 1 in Chinese hamster cells with a stable multiple resistance, Doklady Akad. Nauk SSSR, 1986, vol. 286, no. 3, pp. 712–717.

    CAS  Google Scholar 

  • Grinchuk, T.M., Ushal, I.E., Artsybasheva, I.V., Pavlenko, M.A., and Kudryavtsev, B.N., Microfluorimetric analysis of dynamics of genomic changes of Chinese hamster fibroblasts CHL V-79 RJK with multidrug resistance, Tsitologiia, 2007, vol. 49, no. 12, pp. 1011–1015.

    PubMed  CAS  Google Scholar 

  • Gripenberg, U., Size variation and orientation of the human Y chromosome, Chromosoma, 1964, vol. 15, pp. 618–629.

    Article  PubMed  CAS  Google Scholar 

  • Groen, F.C.A., and van, der, Ploeg, M., DNA cytophotometry of human chromosomes, J. Histochem. Cytochem., 1979, vol. 27, pp. 436–440.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.C., Gregory, T.R., and Hebert, P.D., From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry, J. Histochem. Cytochem., 2002, vol. 50, pp. 735–749.

    Article  PubMed  CAS  Google Scholar 

  • Harris, P., Boyd, E., Young, B.D., and Ferguson-Smith, M.A., Determination of the DNA content of human chromosomes by flow cytometry, Cytogenet. Cell Genet., 1986, vol. 41, pp. 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Karpishchenko, A.I., Meditsinskie laboratornye tekhnologii (Medical laboratory technologies), St. Petersburg: Nauka, 1999.

    Google Scholar 

  • Khesin, R.B., Nepostoyanstvo genoma (Variability of the Genome), Moscow: Nauka, 1985.

    Google Scholar 

  • Krishan, A., Dandekar, P., Nathan, N., Hamelik, R., Miller, C., and Shaw, J., DNA index, genome size, and electronic nuclear volume of vertebrates from the Miami Metro zoo, Cytometry A, 2005, vol. 65A, pp. 26–34.

    Article  CAS  Google Scholar 

  • Kudryavtsev, B.N., Kudryavtseva, M.V., and Faddeeva, M.D., DNA cytofluorimetry with ethidium bromide-SO-2, Tsitologiia, 1974b, vol. 16, no. 1, pp. 107–111.

    CAS  Google Scholar 

  • Kudryavtsev, B.N., Kudryavtseva, M.V., and Rozanov, Yu.M., Determination of optimal conditions for cytochemical tests for microfluorometric determination of DNA in cells. IV. The differentiation step in the Feulgen test with auramine-SO-2, Tsitologiia, 1974a, vol. 16, no. 2, pp. 256–261.

    Google Scholar 

  • Lazyuk, G.I., Teratologiya cheloveka (Human Teratology), Moscow: Meditsina, 1991.

    Google Scholar 

  • Leslie, I., The nucleic and content of tissues and cells, in The Nucleic Acids, New York: AP Inc., 1955, vol. 2, pp. 1–44.

    Google Scholar 

  • Litvinchuk, S.N., Rozanov, Yu.M., Borkin, L.Ya., and Skorinov, D.V., Molecular-biochemical and cytogenetic aspects of microevolution in tailless amphibians of the fauna of Russia and adjacent countries, in Materialy III s”ezda Gerpetologicheskogo obschestva im. A. M. Nikol’skogo (Proceedings of the III Congress of the A.M. Nikol’skii Herpetological Society), Pushchino., 2008, pp. 247–257.

    Google Scholar 

  • Litvinchuk, S.N., Rozanov, Yu.M., Usmanova, N.M., Borkin, L.Ya., Mazanaeva, L.F., and Kazakov, V.I., Variation of microsatellites BM224 and Bcal7 in populations of green toads (Bufo viridis complex) with various nuclear DNA content and ploidy, Tsitologiia, 2006, vol. 48, no. 4, pp. 332–345.

    PubMed  CAS  Google Scholar 

  • Lyapunova, N.A., Egolina, N.A., and Mkhitarova, E.V., Interindividual and intercellular differences in the total activity of ribosomal genes detectable by the Ag staining of nucleolus organizer regions in human acrocentric chromosomes, Russ. J. Genet., 1988, vol. 24, no. 7, pp. 1282–1288.

    Google Scholar 

  • Lyckegaard, E.M., and Clark, A.G., Ribosomal DNA and stellate gene copy number variation on the Y chromosome of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 1944–1948.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor, H.C. and Varley, J, Working with animal chromosomes, Chichester, Wiley, 1984.

    Google Scholar 

  • Mamaeva, S.E., Atlas khromosom postoyannykh kletochnykh liny cheloveka i zhivotnykh (Atlas of chromosomes of permanent cell lines of humans and animals), Moscow: Nauchnyi mir, 2002.

    Google Scholar 

  • Mattson, P., and Rydberg, B., Analysis of chromosomes from human peripheral lymphocytes by flow cytometry, Cytometry, 1981, vol. 1, pp. 369–372.

    Article  Google Scholar 

  • McKay, R.D.G., Bobrow, M., and Cooke, H.J., The identification of a repeated DNA sequence involved in the karyotype polymorphism of the human Y chromosome, Cytogenet. Cell Genet., 1978, vol. 21, pp. 19–32.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, W.H., Hostetter, T.L., and Lubs, H.A., Y Family study: heritable variation in the length of the human Y chromosome, Am. J. Hum. Genet., 1972, vol. 24, pp. 686–693.

    PubMed  CAS  Google Scholar 

  • Mefford, H., van, den, Engh, G., Friedman, C., and Trask, B.J., Analysis of the variation in chromosome size among diverse human populations by bivariate flow karyotyping, Hum. Genet., 1997, vol. 100, pp. 138–144.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, M.L., Mayall, B.H., Bogart, E., Moore, D.H., and Perry, B.H., DNA content and DNA-based centromeric index of the 24 human chromosomes, Science, 1973, vol. 179, pp. 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky, E., and Ris, H., The desoxyribonucleic acid content of animal cells and its evolutionary significance, J. Gen. Phiysiol., 1951, vol. 34, pp. 451–462.

    Article  CAS  Google Scholar 

  • Ornstein, L., Maunter, W., Davis, B.J., and Tamura, R., New horizons in fluorescence microscopy, J. Maunt. Sinai Hospt., 1957, vol. 24, pp. 1066–1078.

    CAS  Google Scholar 

  • Prokof’eva-Bel’govskaya, A.A., Geterokhromaticheskie rayony khromosom (Heterochromatic regions of chromosomes), Moscow: Nauka, 1986.

    Google Scholar 

  • Rasch, E.M., Barr, H.J., and Rasch, R.W., The DNA content of sperm of Drosophila melanogaster, Chromosoma, 1971, vol. 33, pp. 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Rasch, E.M., DNA “standards” and the range of accurate DNA estimates by Feulgen absorption, Prog. Clin. Biol. Res., 1985, vol. 196, pp. 137–66.

    PubMed  CAS  Google Scholar 

  • Rozanov, Yu.M. and Vinogradov, A.E., Precise DNA cytometry: investigation of individual variability in animal genome size, Tsitologiia, 1998, vol. 40, no. 8/9, pp. 792–799.

    PubMed  Google Scholar 

  • Rozanov, Yu.M., Kudryavtsev, B.N., and Kudryavtseva, M.V., On the accuracy and sensitivity of the flow cytometry method, in Vsesoyuznyi simpozium “Tsitokhimicheskie aspekty razvitiya i funktsionirovaniya nervnoy sistemy” (All-Union Symposium “Cytochemical Aspects of the Development and Functioning of the Nervous System”), Tbilisi, 1976, pp. 69–71.

    Google Scholar 

  • Rozanov, Yu.M., Litvinchuk, S.N., Borkin, L.Ya., and Chagin, V.O., The study of animal genome size variation: evidence of the existence of 1 Mb chromatin epidomain, Tsitologiia, 2007, vol. 49, no. 9, pp. 788.

    Google Scholar 

  • Rudkin, G.T., Photometric measurements of individual metaphase chromosomes, In Vitro, 1965, vol. 1, pp. 12–20.

    Article  Google Scholar 

  • Shapiro, H.S., Deoxyribonucleic acid content per cell of various organisms, in Handbook of Biochemistry and Molecular Biology, Cleveland: CRC Press, 1976, vol. 2, pp. 284–306.

    Google Scholar 

  • Shtein, G.I., Panteleev, V.G., Povarkova, A.V., and Kudryavtsev, B.N., Potential of the image analyzer “Videotest” for performing microphotometric study in cytology, Tsitologiia, 1998, vol. 40, no. 10, pp. 913–916.

    Google Scholar 

  • Stults, D.M., Killen, M.W., Pierce, H.H., and Piercé, A.J., Genomic architecture and inheritance of human ribosomal RNA gene clusters, Genome Res., 2008, vol. 18, pp. 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Sukhikh, T.R., DNA microfluorometry in individual mammalian chromosomes, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad, 1985.

    Google Scholar 

  • Sukhikh, T.R., Kalimagambetov, A.M., Barskii, I.Ya., Khomenkova, S.A., Vinogradov, A.E., Rozanov, Yu.M., and Kudryavtsev, B.N., A photographic microfluorimetric method for determining the DNA content in individual human chromosomes, Tsitologiia, 1989, vol. 31, no. 11, pp. 1329–1337.

    PubMed  CAS  Google Scholar 

  • Tiersch, T.R., Chandler, R.W., Wachtel, S.S., and Elias, S., Reference Standards for flow Cytometry and Application in Comparative Studies of Nuclear DNA Content, Cytometry, 1989, vol. 10, pp. 706–710.

    Article  PubMed  CAS  Google Scholar 

  • Tusie-Luna, M-T. and White, P.C., Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms (recombination/polymerase chain reaction/spermatozoa), Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 10796–10800.

    Article  PubMed  CAS  Google Scholar 

  • Unne’rus, V., Fellman, J., and de, la, Chapelle, A., The length of the human Y chromosome, Cytogenetics, 1967, vol. 6, pp. 213–227.

    Article  Google Scholar 

  • Veiko, N.N., Shubaeva, N.O., Malashenko, A.M., Beskova, T.B., Agapova, R.K., and Lyapunova, N.A., Ribosomal genes in inbred mouse strains: interstrain and intrastrain variation of copy number and extent of methylation, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 1021–1031.

    Article  CAS  Google Scholar 

  • Vendrely, R. and Vendrely, C., The results of cytophotometry in the study of the deoxyribonucleic acid (DNA) content of the nucleus, Int. Rev. Cytol., 1956, vol. 5, pp. 171–194.

    Article  CAS  Google Scholar 

  • Vinogradov, A.E., Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship, Cytometry, 1998, vol. 31, pp. 100–109.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, F. and Motulsky, A.G., Human Genetics, Berlin: Springer-Verlag, 1987.

    Book  Google Scholar 

  • Watson, D., Molecular Biology of the Gene, 3rd ed., San Francisco: Benjamin-Cummings Publ., 1976.

    Google Scholar 

  • Zakharov, A.F., Benyush, V.A., Kuleshov, N.P., and Baranovskaya, L.I., Khromosomy cheloveka (Human Chromosomes), Meditsina, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kudryavtsev.

Additional information

Original Russian Text © N.A. Agafonova, G.A. Sakuta, Yu.M. Rozanov, G.I. Shtein, B.N. Kudryavtsev, 2013, published in Tsitologiya, 2013, Vol. 55, No. 5, pp. 338–347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agafonova, N.A., Sakuta, G.A., Rozanov, Y.M. et al. DNA image-fluorimetry of individual human chromosomes. Cell Tiss. Biol. 7, 352–361 (2013). https://doi.org/10.1134/S1990519X13040020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13040020

Keywords

Navigation