Skip to main content
Log in

Effects of styryl dye RH 421 on the activity of amphotericin B in cell and model membranes

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The combined action of polyene macrolid antibiotic amphotericin B and styryl dye RH 421 in model lipid membranes and in yeast Saccharomyces cerevisiae is studied. Addition of RH 421 to ergosterol-containing lipid bilayers leads to an increase by 8.5 ±3.2 times of the equilibrium number of open amphotericin channels. The agar-diffusion method shows that RH 421 enhances the antimicrobial effect of amphotericin B, leading to an increase by 1.5 times of the zone of growth inhibition of S. cerevisiae strain. Our data suggest that RH 421 is a potential synergist of amphotericin B and can be used in novel drugs with improved pharmacological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AB:

amphotericin B

DMSO:

dimethylsulfoxide

DPPCh:

1,2-diphytanoyl-sn-glycero-3-phosphocholine

References

  • Andreoli, T.E., The structure and function of amphotericin B-cholesterol pores in lipid bilayer membranes, Ann. N.Y. Acad. Sci., 1974, vol. 235, pp. 448–468.

    Article  PubMed  CAS  Google Scholar 

  • Bolard, J., How do polyene macrolid antibiotics affect the cellular membrane properties?, Biochim. Biophys. Acta, 1986, vol. 864, pp. 257–304.

    Article  PubMed  CAS  Google Scholar 

  • de Kruijff, B., Gerritsen, W.J., Oerlemans, A., Demel, R.A., and van Deenen, L.L., Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics, Biochim. Biophys. Acta., 1974, vol. 339, pp. 30–43.

    Article  PubMed  Google Scholar 

  • Ghannoum, M.A. and Rice, L.B., Antifunginal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance, Clin. Microb. Rev., 1999, vol. 12, pp. 501–517.

    CAS  Google Scholar 

  • Gray, K.C., Palacios, D.S., Dailey, I, Endo, M.M., Uno, B.E., Wilcock, B.C., and Burke, M.D., Amphotericin primarily kills yeast by simply binding ergosterol, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 2234–2239.

    Article  PubMed  CAS  Google Scholar 

  • Hebeka, E.K. and Solotorovsky, M., Development of resistance to polyene antibiotics in Candida albicans, J. Bacteriol., 1965, vol. 89, pp. 1533–1539.

    PubMed  CAS  Google Scholar 

  • Kasumov, Kh.M., Struktura i membrannaya funktsiya polienovykh makrolidnykh antibiotikov (Structure and Membrane Function of Polyene Macrolide Antibiotics), Moscow: Nauka, 2009.

    Google Scholar 

  • Lang, T.A. and Sesik, M., Kak opisyvat’ statistiku v meditsine. Annotirovannoe rukovodstvo dlya avtorov, redaktorov i retsenzentov (How to Describe the Statistics in Medicine: An Annotated Guide for Authors, Editors, and Reviewers), Moscow: Prakticheskaya meditsina, 2011.

    Google Scholar 

  • Marty, A. and Finkelstein, A., Pores formed in lipid bilayer membranes by nystatin, differences in its one-sided and two-sided action, J. Gen. Physiol., 1975, vol. 65, pp. 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Montall, M., and Muller, P., Formation of bimolecular membranes from lipid monolayers and study of their electrical properties, Proc. Natl. Acad. Sci. USA, 1972, vol. 65, pp. 3561–3566.

    Article  Google Scholar 

  • Nes, W.R., Sekula, B.C., Nes, W.D., and Adler, J.H., The functional importance of structural features of ergosterol in yeast, J. Biol. Chem., 1978, vol. 253, pp. 6218–6225.

    PubMed  CAS  Google Scholar 

  • Ostroumova, O.S., Efimova, S.S., and Schagina, L.V., Probing amphotericin B single channel activity by membrane dipole modifiers, PLoS ONE, 2011, vol. 7, p. e30261.

    Article  Google Scholar 

  • Sherman, F., Fink, G.R., and Hicks, J.B., Laboratory Course Manual for Methods in Yeast Genetics, New York: Cold Spring Harbour, 1986.

    Google Scholar 

  • Shigemi, A., Matsumoto, K., Ikawa, K., Yaji, K., Shimodozono, Y., Morikawa, N., Takeda, Y., and Yamada, K., Safety analysis of liposomal amphotericin B in adult patients: anaemia, thrombocytopenia, nephrotoxicity, hepatotoxicity and hypokalaemia, Int. J. Antimicrob. Agents, 2011, vol. 38, pp. 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, F., Hugerat, Y., Simchen, G., Hurko, O., Connelly, C., and Hieter, P., Yeast kar1 mutants provide an effective method for YAC transfer to new hosts, Genomics, 1994, vol. 22, pp. 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, G.R., Caneda, J., and Patterson, T.F., Overview of antifungal agents, Clin. Chest. Med., 2009, vol. 30, pp. 203–215.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mikhailova.

Additional information

Original Russian Text © E.V. Mikhailova, S.S. Efimova, O.S. Ostroumova, 2013, published in Tsitologiya, Vol. 55, No. 2, 2013, pp. 136–139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, E.V., Efimova, S.S. & Ostroumova, O.S. Effects of styryl dye RH 421 on the activity of amphotericin B in cell and model membranes. Cell Tiss. Biol. 7, 289–292 (2013). https://doi.org/10.1134/S1990519X13030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X13030097

Keywords

Navigation