Skip to main content
Log in

Confocal microscopy study of membrane organelles of the skeletal muscle fiber in the process of Zenker’s (spreading) necrosis

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Using laser confocal microscopy and some vital fluorescent dyes (acridine orange, RH 414, DiOC6(3), rhodamine 123, fluorescein dextran), changes of the T-system and cellular acidic organelles were studied during spreading (Zenker’s) necrosis of isolated frog skeletal muscle fibers. The most characteristic of the initial stages of development of Zenker’s necrosis is the formation of numerous vacuoles as a result of local T-system swellings. The vacuole length can reach tens of micrometers. They are located both near nuclear poles and between myofibrils. Until the moment of contraction knot separation, the vacuoles preserve their connections with normal T-tubules and under certain conditions (glycerol influx to the fiber) are reversible. The vacuoles deform nuclei and cisternae of the sarcoplasmic reticulum. Acidic cell organelles accumulating acridine orange (lysosomes, late endosomes, trans-Golgi cisternae) are located in the immediate vicinity both of normal and of vacuolated T-tubules. In the course of the development of the pathological process, the size and number of acidic organelles increases and they tend to be clustered. Vacuolation of the T-system during necrosis was not accompanied by vacuole content acidification. At late stages of necrosis, alterations of nuclei and sarcoplasmic reticulum were observed. The role of cellular acidic organelles and of the T-system vacuolation in development of various muscle pathologies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AO:

acridine orange

SR:

sarcoplasmic reticulum

ZN:

Zenker’s necrosis

References

  • Bechet, D., Tassa, A., Taillandier, D., Combaret, L., and Attaix, D., Lysosomal Proteolysis in Skeletal Muscle, Int. J. Biochem. Cell Biol., 2005, vol. 37, pp. 2098–2114.

    Article  PubMed  CAS  Google Scholar 

  • Bird, J.W.C., Roisen, F.J., Yorke, G., Lee, J.A., McElligott, M.A., Triemer, D.F., and John A.S., Lysosomes and Proteolytic Enzyme Activities in Cultured Striated Muscle Cells, J. Histochem. Cytochem., 1981, vol. 29, pp. 431–439.

    PubMed  CAS  Google Scholar 

  • Carpenter, S. and Karpati, G., Segmental Necrosis and Its Demarcations in Experimental Micropuncture Injury of Skeletal Muscle Fibers., J. Neurobiol. Exp. Neurology, 1989, vol. 48, pp. 154–170.

    CAS  Google Scholar 

  • Casademont, J., Carpenter, S., and Karpati, G., Vacuolation of Muscle Fibers near Sarolemmal Breaks Represents T-Tubule Dilatation Secondary to Enhanced Sodium Pump Activity, J. Neurobiol. Exp. Neurology, 1988, vol. 47, pp. 619–629.

    Google Scholar 

  • Clerc, S. and Barenholz, Y., A Quantitative Model for Using Acridine Orange as a Transmembrane pH Gradient Probe, Analyt. Biochem., 1998, vol. 259, pp. 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Corbett A.J., and Pollock, M., Experimental Potassium Depletion Myopathy, J. Neurol. Sci., 1981, vol. 49, pp. 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Dexxx Bleecker, J.L., Engel, A.G., and Winkelmann, J.C., Localization of Dystrophin and β-Spectrin in Vacuolar Myopathies, Am. J. Pathol., 1993, vol. 143, pp. 1200–1208.

    Google Scholar 

  • Duncan, C.J., Role of Calcium in Triggering Rapid Ultrastructural Damage in Muscle: a Study with Chemically Skinned Fibers, J. Cell Sci., 1987, vol. 87, pp. 581–594.

    PubMed  CAS  Google Scholar 

  • Engel, A.G., Evolution and Content of Vacuoles in Primary Hypokalemic Periodic Paralysis, Mayo Clin. Proc., 1970, vol. 45, pp. 774–813.

    PubMed  CAS  Google Scholar 

  • Gamaley, I.A., and Kaulin, A.B., The vital Study of Hydrophobic Interactions in Protein Fibrils by Means of Polarizational-fluorescent Method. II. Muscle Fibers, Tsitologiya, 1988, vol. 30, no. 1, pp. 49–50.

    Google Scholar 

  • Haugland R.P., Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc., Ninth Edition, Eugene, OR, USA, 2004.

  • Kalamkarova, M.B., Kofman, E.B., Filatova, L.G., and Shtrankfeld, I.G., On Binding of Acridine Orange with Muscle Proteins, Tsitologiya, 1965, vol. 7, no. 2, pp. 240–243.

    CAS  Google Scholar 

  • Kao, M.D. and Gordon, A.M., Alteration of Skeletal Muscle Cellular Structures by Potassium Depletion, Neurology, 1977, vol. 27, pp. 855–860.

    PubMed  CAS  Google Scholar 

  • Karpati, G. and Carpenter, S., Micropuncture Lesions of Skeletal Muscle Cells: a New Experimental Model for the Study of Muscle Cell Damage, Repair, and Regeneration, Disorders of the Motor Unit, New York: John Wiley, 1982, pp. 517–533.

    Google Scholar 

  • Krolenko, S.A., Amos, W.B., and Lucy, J.A., Reversible Vacuolation of the Transverse Tubules of Frog Skeletal Muscle: a Confocal Fluorescence Microscopy Study, J. Muscle Res. Cell Motil., 1995, vol. 16, pp. 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko, S., Adamyan, S., Belyaeva, T., and Mozhenok, T., Acridine Orange Accumulation in Acid Organelles of Normal and Vacuolated Frog Skeletal Muscle Fibers, Cell Biol. Int., 2006, vol. 30, pp. 933–939.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko, S.A., Sistema myshechnykh volokon (The T-System of Muscle Fibers), Leningrad: Nauka, 1975.

    Google Scholar 

  • Krolenko, S.A., Adamyan, S.Ya., Belyaeva, T.N., and Mozhenok, T.P., Localization of Acidic Organelles in Frog Skeletal Muscle Fibers, Tsitologiya, 2003, vol. 45, no. 7, pp. 714–721.

    CAS  Google Scholar 

  • Krolenko, S.A., Amos, W.B., Brown, S.C., Tarunina, M.V., and Lucy, J.A., Accessibility of T-Tubule Vacuoles to Extracellular Dextran and DNA: Mechanism and Potential Application of Vacuolation, J. Muscle Res. Cell Motil., 1998, vol. 19, pp. 603–611.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko, S.A. and Adamyan, S.Ya., Stereological Analysis of the System Vacuolation in Frog Muscle Fiber T-System Revealed by Confocal Fluorescence Microscopy, Tsitologiya, 2000, vol. 42, no. 12, pp. 1125–1133.

    CAS  Google Scholar 

  • Krolenko, S.A. and Lucy, J.A., Reversible Vacuolation of T-Tubules in Skeletal Muscle: Mechanisms and Implications for Cell Biology, 2001, Int. Rev. Cytol., 2001, vol. 202, pp. 243–298.

    PubMed  CAS  Google Scholar 

  • Krolenko, S.A. and Lucy, J.A., Vacuolation in T-Tubules as a Model for Tubular-vesicular Transformation in Biomembrane System, Cell Biol. Int., 2002, vol. 26, pp. 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Libelius, R., Jirmanova, I., Lundquist, I., Thesleff, S., and Barnard, E.A., T-Tubule Endocytosis in Dystrophic Chicken Muscle and its Relation to Muscle Fiber Degeneration, Acta Neuropathol., 1979a, vol. 48, pp. 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Libelius, R., Josefsson, J.-O., and Lundquist, I., Endocytosis in Chronically Denervated Mouse Skeletal Muscle. A Biochemical and Ultrastructural Study with Horseradish Peroxidase, J. Neurosci., 1979b, vol. 4, pp. 283–292.

    Article  CAS  Google Scholar 

  • Lu, Z., Joseph, D., Bugnard, E., Zaal, K.J., and Ralston, E., Golgi Complex Reorganization during Muscle Differentiation: Visualization in Living cells and Mechanism, Mol. Biol. Cell, 2001, vol. 12, pp. 795–808.

    PubMed  CAS  Google Scholar 

  • Nonaka, I., and Sugita, H., Intracytoplasmic Vacuoles in αW Fibers of Dystrophic Chicken Muscle—Probable Early Pathologic Event Initiates Massive Fiber Necrosis, Acta Neuropathol., 1981, vol. 55, pp. 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Palmgren, M.G., Acridine Orange as a Probe for Measuring pH Gradients across Membranes: Mechanism and Limitations, Analyt. Biochem., 1991, vol. 192, pp. 316–321.

    Article  PubMed  CAS  Google Scholar 

  • Ralston, E., Changes in Architecture of the Golgi Complex and Other Subcellular Organelles during Myogenesis, J. Cell Biol., 1993, vol. 120, pp. 399–409.

    Article  PubMed  CAS  Google Scholar 

  • Ralston, E., Ploug, T., Kalhovde, J., and Lomo, T., Golgi Complex, Endoplasmic Reticulum Exit Sites, and Microtubules in Skeletal Muscle Fibers are Organized by Patterned Activity, J. Neurosci., 2001, vol. 21, pp. 875–883.

    PubMed  CAS  Google Scholar 

  • Schindler, M., Grabski, S., Hoff, E., and Simon, S.M., Defective pH Regulation in Acidic Compartments in Human Breast Cancer Cells (MCF-7) Is Normalized in Adriamycin-resistant Cells (MCF-7adr), Biochemistry, 1996, vol. 35, pp. 2811–2817.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, T., and Dauber, W., About the T-system in the Myofibril-free Sarcoplasm of the Frog Muscle Fiber, Tissue and Cell., 2004, vol. 36, pp. 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Vult von Steyern, F., Josefsson, J-O., and Tågerud, S., Rhodamin B, a Fluorescent-probe for Acid Organelles in Denervated Skeletal Muscle, J. Histochem. Cytochem., 1996, vol. 44, pp. 267–274.

    PubMed  CAS  Google Scholar 

  • Weisz, O.A., Acidification and Protein Traffic, Int. Rev. Cytol., 2003, vol. 226, pp. 259–319.

    Article  PubMed  CAS  Google Scholar 

  • Zelenin, A.V., Acridine Orange as a Probe for Cell and Molecular Biology, Fluorescent and Luminescent Probes for Biological Activity, London: Academic Press, 1999, pp. 117–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Krolenko, S.Ya. Adamyan, T.N. Belyaeva, T.P. Mozhenok, A.V. Salova, 2007, published in Tsitologiya, Vol. 49, No. 2, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krolenko, S.A., Adamyan, S.Y., Belyaeva, T.N. et al. Confocal microscopy study of membrane organelles of the skeletal muscle fiber in the process of Zenker’s (spreading) necrosis. Cell Tiss. Biol. 1, 183–190 (2007). https://doi.org/10.1134/S1990519X07020101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X07020101

Key words

Navigation