Skip to main content
Log in

Differentiation of multipotent mesenchymal stromal cells of human bone marrow into cells of cartilage tissue by culturing in three-dimensional OPLA scaffolds

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Bone marrow multipotent mesenchymal stromal cells show considerable promise for the engineering of human three-dimensional transplants of cartilage tissue. We demonstrated the directed differentiation of BM MMSC in cells of cartilage tissue by culturing them in OPLA polymer three-dimensional scaffolds in a medium with chondrogenesis inducers. Cells were loaded into porous scaffolds by saturating polymer blocks with a cellular suspension. This was followed by high-speed centrifugation of the matrix-embedded cells and cultivation of the engineering constructs in a condrogenic medium for 28 days. Histological analysis of the three-dimensional transplants derived in vitro showed a uniform distribution of cells in the matrix. Morphologically, the cells were similar to the chondrocyte-like cells of articular cartilage. Immunohistochemical analysis revealed aggrecan and collagen type 2, which are the major markers of chondrogenesis, in the constructs. Preclinical research on immunodeficient mice showed that the engineering transplants were not toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AG:

antigens

AB:

antibodies

DMEM:

Eagle modified Dulbecco medium

BM:

bone marrow

MMSC:

multipotent mesenchymal stromal cells

FCS:

fetal calf serum

PE:

phycoerythrin

CD:

locus of cytodifferentiation

PBS:

phosphate buffer

TGF:

transforming growth factor

References

  • Awad, H. A., Wickham, M.Q., Leddy, H.A., Gimble, J.M., and Guilak, F., Chondrogenic differentiation of adiposederived adult stem cells in agarose, alginate, and gelatin scaffolds, Biomaterials, 2004, vol. 25, pp. 3211–3222.

    Article  PubMed  CAS  Google Scholar 

  • Barry, F.P., Boynton, R.E., Haynesworth, S., Murphy, J.M., and Zaia, J., The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105), Biochem. Biophys. Res. Commun., 1999, vol. 265, pp. 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Barry, F., Boynton, R.E., Liu, B., and Murphy, J.M., Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components experimental cell research, Exp. Cell Res., 2001, vol. 268, pp. 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L., Treatment of deep cartilage defects in the knee with autologous chondrocytes transplantation, N. Engl. J. Med., 1994, vol. 331, pp. 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Bruder, S. P., Ricalton, N. S., Boynton, R. E., Connolly, T. J., Jaiswal, N., Zaia, J. and Barry, F. P., Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation, J. Bone Miner. Res., 1998, vol. 13, pp. 655–663.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, S.R., Toolan, B., Menche, D., Pitman, M.I., Pachence, J.M., Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair, J. Bone Joint. Surg. Br., 1997, vol. 79, pp. 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Godbey, W.T., Hindy, B.S.S., Sherman, M.E., and Atala, A., A novel use centrifugal force for cell seeding into porous scaffolds, Biomaterials, 2004, vol. 25, pp. 2799–2805.

    Article  PubMed  CAS  Google Scholar 

  • Goessler, U.R., Bugert, P., Bieback, K., Deml, M., Sadick, H., Hormann, K., and Riedel, F., In-vitro analysis of the expression of TGF beta-superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture, Cell Mol. Biol. Lett., 2005, vol. 10, pp. 345–362.

    PubMed  CAS  Google Scholar 

  • Grande, D.A., Breitbart, A.S., Mason, J., Paulina, C., Laser, J., and Schwartz, R.E., Cartilage tissue engineering: current limitations and solutions, Clin. Orthop., 1999, vol. 367 S, pp. 176–185.

    Article  Google Scholar 

  • Grande, D.A., Pitman, M. I., Peterson, L., Menche, D., and Klein, M., The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation, Orthop. Res., 1989, vol. 7, pp. 208–218.

    Article  CAS  Google Scholar 

  • Haynesworth, S.E., Baber, M.A., and Caplan, A.I., Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies, Bone, 1992, vol. 13, pp. 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B., Hering, M.H., Caplan, A.I., Goldberg, V.M., and Yoo, J.U., In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells, Exp. Cell Res., 1998, vol. 238, pp. 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, C.B. and Knudson, W., Cartilage proteoglycans, Cell and Develop. Biol., 2001, vol. 12, pp. 69–78.

    Article  CAS  Google Scholar 

  • Li, W.J., Tuli, R., Huang, X., Laquerriere, P., and Tuan, R.S., Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold, Biomaterials, 2005, vol. 26, pp. 5158–5166.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, A.M., Beck, S.C., Murphy, J.M. Barry, F.P., Chichester, C.O., and Pittenger, M.F., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng. 1998, vol. 4, pp. 415–428.

    Article  PubMed  CAS  Google Scholar 

  • Meinel, L., Hofman, S., Karageorgiou, V., Zichner, L., Langer, R., Kaplan, D., and Vunjak-Novakovic, G., Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds, Biotech. Bioeng., 2004, vol. 88, pp. 379–391.

    Article  CAS  Google Scholar 

  • Nöth, U., Tuli, R., Osyczka, A.M., Danielson, K.G., and Tuan, R.S., In Vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells, Tissue Eng. 2002, vol. 8, pp. 131–144.

    Article  PubMed  Google Scholar 

  • Pierce, E., Histochemistry, Moscow, Mir, 1962, pp.1–1031.

    Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mossa, J.D., Moorman, M.A., Simonetti, D.W., Graig, S., and Marshak D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, vol. 284, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D.J., Marrow stromal cells as stem cells for nonhematopoietic tissue, Science, 1997, vol. 276, pp. 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Rahforth, B., Weisser, J., Sternkopf, F., Aigner, T., von der Mark, K., and Brauer, R., Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits, Osteoarthritis Cartilage, 1998, vol. 6, pp. 50–65.

    Article  Google Scholar 

  • Redman, S.N., Oldfield, S.F., and Archer, C.W., Current strategies for articular cartilage repair, Eur. Cell Mater., 2005, vol. 9, pp. 23–32.

    PubMed  CAS  Google Scholar 

  • Sachlos, E. and Czernuszka, J. T., Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, Eur. Cell Mater., 2003, vol. 30, pp. 29–39.

    Google Scholar 

  • Schmid, T.M., Cole, A.A., and Chen Q., Assembly of type X collagen by hypertrophic chondrocytes, In: Extracellular Matrix Assembly and Structure, San Diego, CA: Acad. Press, 1994, pp. 171–206.

    Google Scholar 

  • Sekiya, I., Vuoristo, J.T., Larson, B.L., and Prockop, D.J., In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis, PNAS, 2002, vol. 99, pp. 4397–4402.

    Article  PubMed  CAS  Google Scholar 

  • Teplashin, A.S., Korzhikova, S.V., Sharifullina S.Z., Chupikova, N.I., Rostovskaja, M.S., and Savchenkova, I.P., Characteristics of mesenchymal stem cells isolated from human bone marrow and adipose tissue, Tsitologiya, 2005, vol. 47, no. 2, pp. 130–135.

    Google Scholar 

  • Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P.A., Hozack, W.J., Danielson, K.G., Hall, D.J., and Tuan, R.S., Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk, J. Biol. Chem., 2003, vol. 278, pp. 41227–41236.

    Article  PubMed  CAS  Google Scholar 

  • Vacanti, C.A., Langer, R., Schloo, B., and Vacanti, J.P., Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation, Plast. Reconstr. Surg., 1991, vol. 88, pp. 753–759.

    Article  PubMed  CAS  Google Scholar 

  • Von derxxx Mark, K., Gauss, V., von der Mark, H., and Muller, P., Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture, Nature, 1977, vol. 267, pp. 531–532.

    Article  Google Scholar 

  • Yoo, J.U., Barthel, T.S., Nishimura, K., Solchaga, L., Caplan, A.I., Golberg, V.M., and Johnstone, B., The chondrogenic potential of human bone marrow-derived mesenchymal progenitor cells, J. Bone Joint Surg. Am., 1998, vol. 80, pp. 1745–1757.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Teplyashin, S.V. Korjikova, S.Z. Sharifullina, M.S. Rostovskaya, N.I. Chupikova, N.Yu. Vasyunina, N.V. Andronova, E.M. Treshalina, I.P. Savchenkova, 2007, published in Tsitologiya, Vol. 49, No. 2, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplyashin, A.S., Korjikova, S.V., Sharifullina, S.Z. et al. Differentiation of multipotent mesenchymal stromal cells of human bone marrow into cells of cartilage tissue by culturing in three-dimensional OPLA scaffolds. Cell Tiss. Biol. 1, 125–132 (2007). https://doi.org/10.1134/S1990519X07020034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X07020034

Key words

Navigation