Skip to main content
Log in

Estimating diffusion-capacity parameters of a coal bed using the gas pressure measured in a hole and the solution of an inverse problem

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A geomechanical model is proposed for gas emission from a coal bed with block structure. Some coefficient inverse problem is formulated for finding the initial gas content as well as the diffusion and mass transfer coefficients from the measured pressure in a well. The solvability of this problem is tested, and the additional data on the gas-kinetic characteristics of the coal bed are shown to be necessary for the inverse problem to have a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Slastunov, Early Degassing and Methane Extraction of Coal Mine Deposits (Moscov. Gos. Gorn. Univ., Moscow, 1999) [in Russian].

    Google Scholar 

  2. Yu. N. Malyshev and A. T. Airuni, A Comprehensive Degassing of Coal Mines (Akad. Gorn. Nauk, Moscow, 1999) [in Russian].

    Google Scholar 

  3. A Guide to Coal Mine Degassing. Approved by the Ministry of Coal Industry of the USSR 29.05.1990.

  4. H. Nambo, “The Abandoned Coal Mine Gas Project in Northern Japan,” in Proceedings of the 1st Annual Coalbed and Coal Mine Methane Conference, Denver, Colorado (March 27–28, 2001).

  5. D. D. Rice, “Coalbed Methane: An Untapped Energy Resource and an Environmental Concern,” U. S. Geological Survey Fact Sheet FS-019-97 (1997). URL: http://energy.usgs.gov

    Google Scholar 

  6. “Methane Decontamination Guide for Efficient Degassing the Methane Sources and Methane Utilization in Coal Mines,” in Economic Commission for Europe, Partnership “Methane — to Markets” (United Nations, New York, Geneva, 2010) [Series ECE Energy, No. 31].

  7. A Guide to Coalbed Methane Reservoir Engineering, Gas Research Institute report GRI-94/0397 (Chicago, Illinois, 1994).

  8. M. Teichmuller and R. Teichmuller, “The Chemical and Structural Metamorphosis of Coals,” in Milestones in Geoscience (Springer, Berlin, 2003), pp. 75–99.

    Chapter  Google Scholar 

  9. J. Seidle, Fundations of Coalbed Methane Reservoir Engineering (Penn Well Books, Tusla, 2011).

    Google Scholar 

  10. S. A. Khristianovich, “Fundamentals of Seepage Theory,” Fiz.-Tekhn. Problemy Razrabotki Polezn. Iskopaemykh, No. 5, 3–18 (1989) [J. Mining Sci. 25 (5), 397–412 (1989)].

    Google Scholar 

  11. S. A. Khristianovich, “Fundamentals of Filtration Theory,” Fiz.-Tekhn. Problemy Razrabotki Polezn. Iskopaemykh, No. 1, 3–17 (1991) [J. Mining Sci. 27 (1), 1–15 (1991)].

    Google Scholar 

  12. J. Q. Shi and S. Durucan, “A Bidisperse Pore DiffusionModel forMethane Displacement Desorption in Coal by CO2 Injection,” Fuel 82(10), 1219–1229 (2003).

    Article  Google Scholar 

  13. L. Lunarzewski, “Gas Emission Prediction and Recovery in Underground Coal Mines,” Internat. J. Coal Geology. 35, 117–145 (1998).

    Article  Google Scholar 

  14. Zh. Ruilin and I. S. Lowndes, “The Application of a Coupled Artificial Neural Network and Fault Tree Analysis Model to Predict Coal and Gas Outbursts,” Internat. J. Coal Geology 84(1), 141–152 (2010).

    Article  Google Scholar 

  15. L. D. Connell, “Coupled Flow and Geomechanical Processes during Gas Production from Coal Seams,” Internat. J. Coal Geology 79(1–2), 18–28 (2009).

    Article  MathSciNet  Google Scholar 

  16. Computer Modeling Group, 2009: GEM: Advanced Compositional and GHG Reservoir Simulator: User’s Guide Version 2009 (Alberta, Calgary, 2009).

  17. S. B. Patton, H. Fan, T. Novak, P. W. Johnson, and R. L. Sanford, “Simulator for Degasification, Methane Emission Prediction and Mine Ventilation,” Mining Engng. 46(4), 341–345 (1994).

    Google Scholar 

  18. G. J. Moridis, M. T. Reagan, R. Santos, K. Boyle, W. Yang, H. Kuzma-Anderson, T. A. Blasingame, C. M. Freeman, D. Ilk, M. Cossio, S. Bhattacharya, and M. Nikolaou, A Self-Teaching Expert System for the Analysis, Design, and Prediction of Gas Production from Unconventional Gas Resources (2011) [Document ID: SPE-149485-MS. DOI: http://dx.doi.org/10.2118/149485-MS].

    Google Scholar 

  19. Y. Oudinot, A. Sultana, R. R. Gonzalez, S. R. Reeves, and M. Vormann, “Development and Optimized History-Matched Models for Coalbed Methane Reservoir,” in Abstracts of International Coalbed Symposium (2006), 0637; http://www.adv-res.com/pdf/Development0Models

    Google Scholar 

  20. I. L. Ettinger, G. D. Lidin, A. M. Dimitiev, and E. S. Shaupachina, Systematic Handbook for the Determination of the Methane Content of Coal Seams from the Seam Gas Pressure and the Methane Capacity of Coal (USBM Translation N 1501, 1958).

    Google Scholar 

  21. S. V. Kuznetsov and R. N. Krigman, Natural Permeability of the Coal Seams and Methods of Determining (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  22. S. A. Khristianovich and Yu. F. Kovalenko, “Measurement of Gas Pressure in Coal Seams,” Fiz.-Tekhn. Problemy Razrabotki Polezn. Iskopaemykh, No. 3, 3–24 (1988) [J. Mining Sci. 24 (3), 181–199 (1988)].

    Google Scholar 

  23. T. D. van Golf-Racht, Fundamentals of Fractured Reservoir Engineering (Elsevier, Amsterdam, 1982; Nedra, Moscow, 1986).

    Google Scholar 

  24. I. P. Vengerov, Thermal Physics of Mines and Delfs. Mathematical Models. Vol. 1: Paradigm Analysis (Nord-Press, Donetsk, 2008) [in Russian].

    Google Scholar 

  25. L. Brochard, M. Vandamme, and R. J.-M. Pellenq, “Poromechanics of Microporous Medium,” J. Mech. Phys. Solids 60, 606–622 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. A. Samarskii, Introduction to Difference Scheme Theory (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  27. Predication Catalogue of Shafts of Kuznetsk Coal Field with Data on Mining and Geological Conditions and Phenomena (Inst. Gorn. Dela, Moscow, 1983) [in Russian].

  28. F. M. Lyakhovitskii, V. K. Khmelevskii, and Z. G. Yashchenko, Engineering Geophysics (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  29. Seisviewer, URL: http://byrim.com/burenie/14.html

  30. O. M. Alifanov, Inverse Problems of Heat Exchange (Mir, Moscow, 1988) [in Russian].

    Google Scholar 

  31. O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extremal Methods for Solving the Ill-Posed Problems (Mir, Moscow, 1988) [in Russian].

    Google Scholar 

  32. V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  33. V. G. Romanov and S. I. Kabanikhin, Inverse Problems forMaxwell’s Equations (VSP, Utrecht, 1994).

    Google Scholar 

  34. L. A. Nazarov and L. A. Nazarova, “Determination of Filtration Properties and Stresses in a Coal Seam by Solving the Inverse Problem,” Fiz.-Tekhn. Problemy Razrabotki Poleznykh Iskopaemykh, No. 2, 15–22 (2000) [J. Mining Sci. 36 (2), 106–113 (2000)].

    Google Scholar 

  35. A. L. Karchevsky, “Simultaneous Reconstruction of Permittivity and Conductivity,” J. Inverse Ill-Posed Probl. 17(4), 385–402 (2009).

    Article  MathSciNet  Google Scholar 

  36. A. V. Penenko, “Discrete-Analytical Schemes for Solving the Inverse Coeficient Problem of Heat Conductivity of a Stratified Medium by the GradientMethods,” Sibirsk. Zh. Vychisl. Mat. 15(4), 393–408 (2012).

    MATH  Google Scholar 

  37. A. A. Duchkov and A. L. Karchevsky, “Estimation of Terrestrial Heat Flow from TemperatureMeasurements in Bottom Sediments,” Sibirsk. Zh. Industr. Mat. 16(3), 61–85 (2013) [J. Appl. Indust. Math. 7 (4), 480–502 (2013)].

    Google Scholar 

  38. A. L. Karchevsky, “Numerical Solution of One-Dimensional Inverse Problem for a System of Elasticity,” Dokl. Akad. Nauk, Ross. Akad. Nauk 375(2), 235–238 (2000).

    Google Scholar 

  39. Australian Standard AS 3980-1999: Guide to the Determination of Gas Content of Coal-Direct Desorption Method (Standards Association of Australia, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nazarova.

Additional information

Original Russian Text ©L.A. Nazarova, L.A. Nazarov, A.L. Karchevsky, M. Vandamme, 2014, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2014, Vol. XVII, No. 1, pp. 78–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, L.A., Nazarov, L.A., Karchevsky, A.L. et al. Estimating diffusion-capacity parameters of a coal bed using the gas pressure measured in a hole and the solution of an inverse problem. J. Appl. Ind. Math. 8, 267–273 (2014). https://doi.org/10.1134/S1990478914020136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478914020136

Keywords

Navigation