Skip to main content
Log in

A model for rod-coil block copolymers

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

A coarse-grained model for studying the phase behavior of rod-coil block copolymer systems on mesoscopic length scales is proposed. The polymers are represented on a particle level (monomers, rods) whereas the interactions between the system’s constituents are formulated in terms of local densities. This conversion to density fields allows an efficient Monte Carlo sampling of the phase space. We demonstrate the applicability of the model and of the simulation approach by illustrating the formation of typical micro-phase separated configurations for exemplary model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lee, B.-K. Cho, and W.-C. Zin, Chem. Rev. 101, 3869 (2001).

    Article  CAS  Google Scholar 

  2. B. D. Olsen, M. Shah, V. Ganesan, and R. A. Segalman, Macromolecules 41, 6809 (2008).

    Article  CAS  Google Scholar 

  3. V. Pryamitsyn and V. Ganesan, J. Chem. Phys. 120, 5824 (2004).

    Article  CAS  Google Scholar 

  4. J. Cui, J. T. Zhu, Z. W. Ma, and W. Jiang, Chem. Phys. 321, 1 (2006).

    Article  CAS  Google Scholar 

  5. A. Al-Sunaidi, W. Den Otter, and J. Clarke, Philos. Trans. A 362, 1773 (2004).

    Article  CAS  Google Scholar 

  6. A. Al-Sunaidi, W. Den Otter, and J. Clarke, J. Chem. Phys. 130, 124910 (2009).

    Article  CAS  Google Scholar 

  7. M. A. Horsch, Z. L. Zhang, and S. C. Glotzer, Phys. Rev. Lett. 95, 056105 (2005).

    Article  Google Scholar 

  8. R. C. Hidalgo, D. E. Sullivan, and J. Z. Y. Chen, J. Phys: Condens. Matter 19, 376107 (2007).

    Article  Google Scholar 

  9. J. S. Lintuvuori and M. R. Wilson, Phys. Chem. Chem. Phys. 11(12), 2116–2125 (2009).

    Article  CAS  Google Scholar 

  10. T. Heiser, G. Adamopoulos, M. Brinkmann, U. Giovanella, S. Ould-Saad, C. Brochon, K. Van de Wetering, and G. Hadyiioannou, Thin Solid Films 511, 219 (2006).

    Article  Google Scholar 

  11. Y. Tao, H. Yohar, B. D. Olsen, and R. A. Segalman, Nano Lett. 7, 2742 (2007).

    Article  CAS  Google Scholar 

  12. B. D. Olsen and R. A. Segalman, Macromolecules 40, 6922 (2007).

    Article  CAS  Google Scholar 

  13. Y. F. Tao, B. McCulloch, S. Kim, and R. A. Segalman, Soft Matter 5, 4219 (2009).

    Article  CAS  Google Scholar 

  14. R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, Macromolecules 42, 9205 (2009).

    Article  CAS  Google Scholar 

  15. A. De Cuendias, R.C. Hiorns, E. Cloutet, L. Vignau, and H. Cramail, Polym. Int. 59, 1452 (2010).

    Article  Google Scholar 

  16. C.-L. Liu, C.-H. Lin, C.-C. Kuo, S.-T. Lin, and W.-C. Chen, Prog. Polym. Sci. 36, 603 (2011).

    Article  CAS  Google Scholar 

  17. P. D. Topham, A. J. Parnell, and R. C. Hiorns, J. Polym. Sci., Part B: Polym. Phys. 49, (2011).

  18. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Lévěque, J.-N. Audinot, S. Berson, Th. Heiser, G. Hadziioannou, and R. Mezzenga, Adv. Mater. 22, 763 (2010).

    Article  CAS  Google Scholar 

  19. W. Song, P. Tang, F. Qiu, Y. Yang, and A.-C. Shi, J. Phys. Chem. B 115, 8390 (2011).

    Article  CAS  Google Scholar 

  20. Q. Wang, Soft Matter 7, 3711 (2011).

    Article  CAS  Google Scholar 

  21. W.-H. Chang, S.-H. Chou, J.-J. Lin, W.-C. Chen, and Y.-J. Sheng, J. Chem. Phys. 132, 214901 (2010).

    Article  Google Scholar 

  22. J. Jiang, X. Xu, J. Huang, and D. Cao, J. Chem. Phys. 135, 054903 (2011).

    Article  Google Scholar 

  23. S.-H. Chou, H.-K. Tsao, and Y.-J. Sheng, J. Chem. Phys. 134, 034904 (2011).

    Article  Google Scholar 

  24. M. Han and E. Sim, J. Phys. Chem. B 116, 1796 (2012).

    Article  CAS  Google Scholar 

  25. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  26. G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  27. F. Schmid, in Handbook of Multiphase Polymer Systems, Ed. by A. Boudenne, L. Ibos, Y. Candau, and S. Thomas (Wiley, 2011), Chap. 3, p. 31.

  28. M. Laradji, H. Guo, and M. J. Zuckermann, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 49, 3199 (1994).

    Article  CAS  Google Scholar 

  29. K. G. Soga, H. Guo, and M. J. Zuckermann, Europhys. Lett. 29, 531 (1995).

    Article  CAS  Google Scholar 

  30. F. A. Detcheverry, H. Kang, K. C. Daoulas, M. Muller, P. F. Nealey, and J. J. De Pablo, Macromolecules 41, 4989 (2008).

    Article  CAS  Google Scholar 

  31. P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dolezel.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolezel, S., Behringer, H. & Schmid, F. A model for rod-coil block copolymers. Polym. Sci. Ser. C 55, 70–73 (2013). https://doi.org/10.1134/S1811238213060015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238213060015

Keywords

Navigation