Skip to main content
Log in

On Partially Hyperbolic Diffeomorphisms and Regular Denjoy Type Homeomorphisms

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In P. D. McSwiggen’s article, it was proposed Derived from Anosov type construction which leads to a partially hyperbolic diffeomorphism of the 3-torus. The nonwandering set of this diffeomorphism contains a two-dimensional attractor which consists of one-dimensional unstable manifolds of its points. The constructed diffeomorphism admits an invariant one-dimensional orientable foliation such that it contains unstable manifolds of points of the attractor as its leaves. Moreover, this foliation has a global cross section (2-torus) and defines on it a Poincaré map which is a regular Denjoy type homeomorphism. Such homeomorphisms are the most natural generalization of Denjoy homeomorphisms of the circle and play an important role in the description of the dynamics of aforementioned partially hyperbolic diffeomorphisms. In particular, the topological conjugacy of corresponding Poincaré maps provides necessary conditions for the topological conjugacy of the restrictions of such partially hyperbolic diffeomorphisms to their two-dimensional attractors. The nonwandering set of each regular Denjoy type homeomorphism is a Sierpiński set and each such homeomorphism is, by definition, semiconjugate to the minimal translation of the 2-torus. We introduce a complete invariant of topological conjugacy for regular Denjoy type homeomorphisms that is characterized by the minimal translation, which is semiconjugation of the given regular Denjoy type homeomorphism, with a distinguished, no more than countable set of orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3

Notes

  1. A basic set \(\Lambda\) is called an attractor (repeller) if it has a closed neighborhood \(U_{\Lambda}\subset M^{3}\) such that \(f(U_{\Lambda})\subset{\rm int}U_{\Lambda}\), \(\bigcap\limits_{k\in\mathbb{N}}f^{k}(U_{\Lambda})=\Lambda\) \((f^{-1}(U_{\Lambda})\subset{\rm int}U_{\Lambda}\), \(\bigcap\limits_{k\in\mathbb{N}}f^{-k}(U_{\Lambda})=\Lambda)\).

  2. Recall that the basic set \(\Lambda\) of an \(A\)-diffeomorphism \(f:M^{3}\rightarrow M^{3}\) is said to be a surface basic set if \(\Lambda\) belongs to an \(f\)-invariant closed surface topologically embedded in the manifold \(M^{3}\).

  3. A nontrivial basic set \(\Lambda\) which is an attractor (repeller) of an \(A\)-diffeomorphism \(f:M^{3}\rightarrow M^{3}\) is said to be expanding (contracting) if the topological dimension of \(\Lambda\) is equal to the dimension of the unstable (stable) manifold of any point of the set \(\Lambda\).

  4. Suppose \(V\) and \(W\) are normed linear spaces, \(A:V\rightarrow W\) is a linear map and \(U\subset V\). Let us define the norm and conorm of \(A\) restricted to \(U\) by: \(||A|U||:=\sup\bigl{\{}\frac{||Av||}{||v||}|v\in U\backslash\{0\}\bigr{\}},||\lfloor A|U\rfloor||:=\inf\bigl{\{}\frac{||Av||}{||v||}|v\in U\backslash\{0\}\bigr{\}}\). According to [16, Definition 2.1], a diffeomorphism \(h\) of a closed three-dimensional manifold \(M^{3}\) is called partially hyperbolic (in a broad sense) if there exists a \(Dh\)-invariant decomposition of the tangent space into two subspaces \(TM^{3}=E^{1}\oplus E^{2}\) and there exist numbers \(0<\lambda<\mu,c>0\) such that for all points \(x\in M^{3}\) the following holds: \(||Dh^{n}|_{E^{1}_{x}}||\leqslant c\lambda^{n}\) and \(c^{-1}\mu^{n}\leqslant||\lfloor Dh^{n}|_{E^{2}_{x}}\rfloor||\), where \(n\in\mathbb{N}\).

  5. Here by the Cantor set we mean a perfect nowhere dense set on the circle.

  6. Here by \(p^{-1}(x)\) one means the complete preimage of the point \(x\).

  7. The map \(\varphi:X\rightarrow Y\), where \(X,Y\) are topological spaces, is said to be an embedding if \(\varphi:X\rightarrow\varphi(X)\subset Y\) is a homeomorphism, where \(\varphi(X)\) carries the induced topology inherited from \(Y\). Here by closed embedded disk we mean an image of a closed disk \(D=\{(x_{1},x_{2})\in\mathbb{R}^{2}|x_{1}^{2}+x_{2}^{2}\leqslant 1\}\) with respect to the embedding \(\tau:D\rightarrow\mathbb{T}^{2}\).

  8. Let \(X\) be a metric space with the metric \(\rho\) and \(A\) be a subset of this space. The diameter of the set \(A\) is the following value: \(\mathrm{diam}A=\sup\{\rho(x,y):x,y\in A\}\).

  9. In the one-dimensional case, in accordance with [9, p. 348], it is possible to construct a Denjoy homeomorphism of the circle with a characteristic set consisting of a countable number of orbits.

References

  1. Arov, D. Z., Topological Similitude of Automorphisms and Translations of Compact Commutative Groups, Uspekhi Mat. Nauk, 1963, vol. 18, no. 5(113), pp. 133–138 (Russian).

    MathSciNet  MATH  Google Scholar 

  2. Biś, A., Nakayama, H., and Walczak, P., Locally Connected Exceptional Minimal Sets of Surface Homeomorphisms, Ann. Inst. Fourier (Grenoble), 2004, vol. 54, no. 3, pp. 711–731.

    Article  MathSciNet  MATH  Google Scholar 

  3. Biś, A., Nakayama, H., and Walczak, P., Modeling Minimal Foliated Spaces with Positive Entropy, Hokkaido Math. J., 2007, vol. 36, no. 2, pp. 283–310.

    MathSciNet  MATH  Google Scholar 

  4. Bohl, P., Über die hinsichtlich der unabhängigen und abhängigen Variabeln periodische Differentialgleichung Erster Ordnung, Acta Math., 1916, vol. 40, no. 1, pp. 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonatti, C. and Viana, M., SRB Measures for Partially Hyperbolic Systems Whose Central Direction Is Mostly Contracting, Israel J. Math., 2000, vol. 115, pp. 157–193.

    Article  MathSciNet  MATH  Google Scholar 

  6. Borsuk, K., On Embedding Curves in Surfaces, Fund. Math., 1966, vol. 59, no. 1, pp. 73–89.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, A., Nonexpanding Attractors: Conjugacy to Algebraic Models and Classification in \(3\)-Manifolds, J. Mod. Dyn., 2010, vol. 4, no. 3, pp. 517–548.

    Article  MathSciNet  MATH  Google Scholar 

  8. Carvalho, M., Sinaĭ – Ruelle – Bowen Measures for \(N\)-Dimensional Derived from Anosov Diffeomorphisms, Ergodic Theory Dynam. Systems, 1993, vol. 13, no. 1, pp. 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  9. Denjoy, A., Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 1932, vol. 11, pp. 333–376.

    MATH  Google Scholar 

  10. Franks, J., Anosov Diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif.,1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 61–93.

    Chapter  Google Scholar 

  11. Fremlin, D. H., Measure Theory: Vol. 3. Measure Algebras, 2nd ed., Colchester: Torres Fremlin, 2004.

    MATH  Google Scholar 

  12. Grines, V., Pochinka, O., Medvedev, V., and Levchenko, Yu., The Topological Classification of Structural Stable \(3\)-Diffeomorphisms with Two-Dimensional Basic Sets, Nonlinearity, 2015, vol. 28, no. 11, pp. 4081–4102.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grines, V. Z., Medvedev, V. S., and Zhuzhoma, E. V., On Surface Attractors and Repellers in \(3\)-Manifolds, Math. Notes, 2005, vol. 78, no. 5–6, pp. 757–767; see also: Mat. Zametki, 2005, vol. 78, no. 6, pp. 813-826.

    Article  MathSciNet  MATH  Google Scholar 

  14. Grines, V. Z. and Zhuzhoma, E. V., The Topological Classification of Orientable Attractors on an \(n\)-Dimensional Torus, Russian Math. Surveys, 1979, vol. 34, no. 4, pp. 163–164; see also: Uspekhi Mat. Nauk, 1979, vol. 34, no. 4(208), pp. 185-186.

    Article  MathSciNet  MATH  Google Scholar 

  15. Grines, V. and Zhuzhoma, E., On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors, Trans. Amer. Math. Soc., 2005, vol. 357, no. 2, pp. 617–667.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hasselblatt, B. and Pesin, Ya., Partially Hyperbolic Dynamical Systems, in Handbook of Dynamical Systems: Vol. 1B, Amsterdam: Elsevier, 2006, pp. 1–55.

    MATH  Google Scholar 

  17. Herman, M.-R., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 1979, no. 49, pp. 5–233.

    Article  MATH  Google Scholar 

  18. Horita, V. and Viana, M., Hausdorff Dimension for Non-Hyperbolic Repellers II: DA Diffeomorphisms, Discrete Contin. Dyn. Syst., 2005, vol. 13, no. 5, pp. 1125–1152.

    Article  MathSciNet  MATH  Google Scholar 

  19. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, EncyclopediaMath. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  20. Kuratowski, K., Topology: Vol. 2, New York: Acad. Press, 1968.

    MATH  Google Scholar 

  21. Kwakkel, F., Minimal Sets of Non-Resonant Torus Homeomorphisms, Fund. Math., 2011, vol. 211, no. 1, pp. 41–76.

    Article  MathSciNet  MATH  Google Scholar 

  22. Markley, N. G., Homeomorphisms of the Circle without Periodic Points, Proc. London Math. Soc. (3), 1970, vol. 20, no. 4, pp. 688–698.

    Article  MathSciNet  MATH  Google Scholar 

  23. McSwiggen, P. D., Diffeomorphisms of the Torus with Wandering Domains, Proc. Amer. Math. Soc.,1993, vol. 117, no. 4, pp. 1175–1186.

  24. Merenkov, S., No Round Wandering Domains for \(C^{1}\)-Diffeomorphisms of Tori, Ergodic Theory Dynam. Systems, 2019, vol. 39, no. 11, pp. 3127–3135.

    Article  MathSciNet  MATH  Google Scholar 

  25. Navas, A., Wandering Domains for Diffeomorphisms of the \(k\)-Torus: A Remark on a Theorem by Norton and Sullivan, Ann. Acad. Sci. Fenn. Math., 2018, vol. 43, no. 1, pp. 419–424.

    Article  MathSciNet  MATH  Google Scholar 

  26. Newhouse, S., On Codimension One Anosov Diffeomorphisms, Amer. J. Math., 1970, vol. 92, no. 3, pp. 761–770.

    Article  MathSciNet  MATH  Google Scholar 

  27. Norton, A., An Area Approach to Wandering Domains for Smooth Surface Endomorphisms, Ergodic Theory Dynam. Systems, 1991, vol. 11, no. 1, pp. 181–187.

    Article  MathSciNet  MATH  Google Scholar 

  28. Norton, A., Minimal Sets, Wandering Domains, and Rigidity in the \(2\)-Torus, in Continuum Theory and Dynamical Systems (Arcata, Calif., 1989), M. Brown (Ed.), Contemp. Math., vol. 117, Providence, R.I.: AMS, 1991, pp. 129–138.

    Chapter  MATH  Google Scholar 

  29. Norton, A. and Sullivan, D., Wandering Domains and Invariant Conformal Structures for Mappings of the \(2\)-Torus, Ann. Acad. Sci. Fenn. Math., 1996, vol. 21, no. 1, pp. 51–68.

    MathSciNet  MATH  Google Scholar 

  30. Norton, A. and Velling, J. A., Conformal Irregularity for Denjoy Diffeomorphisms of the \(2\)-Torus, Rocky Mountain J. Math., 1994, vol. 24, no. 2, pp. 655–671.

    Article  MathSciNet  MATH  Google Scholar 

  31. Searcóid, M. Ó., Metric Spaces, London: Springer, 2007.

    MATH  Google Scholar 

  32. Plykin, R. V., The Topology of Basic Sets of Smale Diffeomorphisms, Sb. Math., 1971, vol. 13, no. 2, pp. 297–307; see also: Mat. Sb. (N. S.), 1971, vol. 84(126), no. 2, pp. 301-312.

    Article  MathSciNet  MATH  Google Scholar 

  33. Plykin, R. V., On the Geometry of Hyperbolic Attractors of Smooth Cascades, Russian Math. Surveys, 1984, vol. 39, no. 6, pp. 85–131; see also: Uspekhi Mat. Nauk, 1984, vol. 39, no. 6(240), pp. 75-113.

    Article  MathSciNet  MATH  Google Scholar 

  34. Poincaré, H., Sur les courbes définies par les équations différentielles (III), J. Math. Pures Appl., 1885, vol. 1, pp. 167–244.

    MATH  Google Scholar 

  35. Sierpiński, W., Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C. R. Acad. Sci. Paris, 1916, vol. 162, pp. 629–632.

    MATH  Google Scholar 

  36. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. (NS), 1967, vol. 73, no. 6, pp. 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  37. Whyburn, G. T., Topological Characterization of the Sierpiński Curve, Fund. Math., 1958, vol. 45, pp. 320–324.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhuzhoma, E. V. and Medvedev, V. S., On Nonorientable Two-Dimensional Basic Sets on \(3\)-Manifolds, Sb. Math., 2002, vol. 193, no. 5–6, pp. 869–888; see also: Mat. Sb., 2002, vol. 193, no. 6, pp. 83-104.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The final version of the article was obtained with the financial support from the RSF grant (project 21-11-00010) using materials previously obtained with the financial support from the RSF grant (project 17-11-01041). In addition, the proof of Theorem 2 was obtained with the financial support from the Laboratory of Dynamical Systems and Applications NRU HSE, grant of the Ministry of Science and Higher Education of the RF, ag. No. 075-15-2022-1101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vyacheslav Z. Grines or Dmitrii I. Mints.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37E30, 37D30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grines, V.Z., Mints, D.I. On Partially Hyperbolic Diffeomorphisms and Regular Denjoy Type Homeomorphisms. Regul. Chaot. Dyn. 28, 295–308 (2023). https://doi.org/10.1134/S1560354723030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723030036

Keywords

Navigation