Skip to main content
Log in

Void fluctuation study of compound hadrons: Signatures of quark-hadron phase transition

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Signatures of quark-hadron phase transition are probed by the investigation of event-by-event fluctuations of hadronic patterns in heavy-ion collisions. This study intend to measure the event-to-event fluctuation of voids (non-hadronic regions) for the experimental data sets of compound hadrons of 32S-AgBr interactions at 200 AGeV. The bin size dependence of voids is numerically evaluated with two different moments 〈G q 〉 and S q defined by R.C. Hwa and Q.H. Zhang. The scaling behaviour of the voids provides an efficient way to use the scaling exponents γ q and σ q to characterize the various interesting properties of the hadronic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Brunet, S. Dake, M. Fukl, et al., “Extremely high multiplicities in high energy nucleus-nucleus collisions,” Phys. Rev. Lett. 50, 2062 (1983); Sh. Ahmad, A. R. Khan, A. Kamal, et al., “Signature of void probability scaling in 28Si-nucleus collisions,” Fizika, Ser. B (Zagreb) 16 (3), 159 (2007).

    Article  ADS  Google Scholar 

  2. E. A. De Wolf, I. M. Dremin, and W. Kittel, “Scaling laws for density correlations and fluctuations in multi-particle dynamics,” Phys. Rep. 270, 1 (1996).

    Article  ADS  Google Scholar 

  3. B. Buschbeck, R. Lipa, and R. Peschanski, “Signal for intermittency in e +-e reactions obtained from negative binomial fits,” Phys. Lett., Ser. B 215, 788 (1988), W. Brauscheweig, R. Gerhards, F. J. Kirschfink, et al., “Study of intermittency in electron-positron annihilation into hadrons,” Phys. Lett., Ser. B 231, 548 (1988); I. V. Ajinenko, Yu. A. Belokopytov, H. Bottcher, et al. (NA22 Collab.), “Intermittency patterns in π + p and k + p collisions at 250 Gev/c,” Phys. Lett., Ser. B 222, 306 (1989).

    Article  ADS  Google Scholar 

  4. M. Dooring and V. Koch, “Event-by-event fluctuations in heavy ion collisions,” nucl-th/0204009.

  5. R. Halynski, A. Jurak, A. Olszewski, et al. (KLM Collab.), “Evidence for intermittent patterns of fluctuations in particle production in high energy interactions in nuclear emulsion,” Phys. Rev. Lett. 62, 733 (1989).

    Article  ADS  Google Scholar 

  6. A. Bialas and R. Peschanski, “Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions,” Nucl. Phys., Ser. B 273, 703 (1986).

    Article  ADS  Google Scholar 

  7. E. A. De Wolf, I. M. Dremin, and W. Kittel, “Scaling laws for density correlations and fluctuations in multi-particle dynamics,” Phys. Rep. 27, 236 (1996).

    Google Scholar 

  8. W. Bari, N. Ahmad, M. M. Khan, et al., “Intermittency in 4.5 A and 14.5 AGeV/c 28Si-nucleus interactions,” Int. J. Mod. Phys., Ser. E 11, 131 (2002).

    Article  ADS  Google Scholar 

  9. R. Hasan, S. Islam, and M. M. Haq, “Levy state law of intermittency and multifractal spectrum in 28Si-AgBr collisions at 14.6 AGeV,” Chaos, Sol. Fract. 25, 1029 (2005).

    Article  ADS  Google Scholar 

  10. Sh. Ahmad, M. M. Khan, N. Ahmad, and A. Ahmad, “Erraticity behaviour relativistic nucleus-nucleus collisions,” J. Phys., Ser. G 30, 1145 (2004).

    Article  ADS  Google Scholar 

  11. R. C. Hwa, “Beyond intermittency: erraticity,” Acta Phys. Pol., Ser. B 27, 1789 (1996).

    Google Scholar 

  12. M. L. Cherry, A. Dabrowska, P. Deines-Jones, et al., “Event-by-event analysis of high multiplicity Pb (158 GeV/nucleon)-AgBr collisions,” Acta Phys. Pol., Ser. B 29, 2129 (1998).

    ADS  Google Scholar 

  13. J. G. Reid (STAR Collab.), “STAR event-by-event fluctuation,” Nucl. Phys., Ser. A 698, 611 (2002).

    Article  ADS  Google Scholar 

  14. R. C. Hwa and Q. Zhang, “Earraticity of rapidity gap,” Phys. Rev., Ser. D 62, 014003 (2000).

    Article  ADS  Google Scholar 

  15. S. Hegyi, Phys. Lett., “Analysis of the rapidity gap probability at CERN collider energies,” Ser. B 274, 214 (1992).

    Google Scholar 

  16. D. Ghosh, A. Deb, S. Bhattacharyya, and G. Ghosh, “Signature of void probability scaling in multipion production at a few GeV/nucleon,” Phys. Rev., Ser. C 69, 027901 (2004); “Void probability scaling in target fragmentation of high energy nucleus-nucleus collisions,” J. Phys., Ser. G 30, 499 (2004).

    Article  ADS  Google Scholar 

  17. D. Ghosh, A. Deb, P. Mandal, et al., “Non-statistical fluctuation of compound multiplicity in nucleusnucleus interactions,” Chin. Phys. Lett. 10, 1436 (2002).

    Article  ADS  Google Scholar 

  18. D. Ghosh, A. Deb, S. Biswas, et al., “Evidence of multifractal structure of compound multiplicity distribution in 24Mg-AgBr interactions at 4.5 AGeV,” Czech. J. Phys. 53, 1173 (2003).

    Article  ADS  Google Scholar 

  19. D. Ghosh, A. Deb, P. Mandal, et al., “Evidence of selfaffine fluctuations of compound multiplicity distributions in nucleus-nucleus interactions at 4.5 AGeV,” Phys. Rev., Ser. C 69, 017901 (2004).

    Article  ADS  Google Scholar 

  20. D. Ghosh, A. Deb, S. Biswas, et al., “Compound multiplicity distribution in nucleus-nucleus interactions-phase transition study,” Fizika, Ser. B 14, 317 (2005).

    ADS  Google Scholar 

  21. D. Ghosh, A. Deb, S. Biswas, et al., “Evidence of strong two-particle and three particle dynamical correlation in compound multiplicity distribution in nucleus-nucleus interactions at 4.5 AGeV,” Can. J. Phys. 84, 1007 (2006).

    Article  ADS  Google Scholar 

  22. R. C. Hwa and Q. Zhang, “Fluctuation of voids in hadronization at phase transition,” Phys. Rev., Ser. C 62, 054902 (2000).

    Article  ADS  Google Scholar 

  23. R. C. Hwa and Q. Zhang, Phys. Rev., “Void analysis of hadronic density fluctuations at the quark-hadron phase transition,” Ser. C 64, 054904 (2001).

    Google Scholar 

  24. D. Ghosh, M. Lahiri, A. Deb, et al., “Factorial correlator study in 32S-AgBr interaction at 200 AGeV,” Phys. Rev., Ser. C 52, 2092 (1995).

    Article  ADS  Google Scholar 

  25. L. V. Hove, “Final state classification and new phase space plot for many-body hadron collisions,” Phys. Lett., Ser. B 28, 429 (1969).

    Article  ADS  Google Scholar 

  26. L. V. Hove, “Longitudinal phase-space plots in multi-particle hadron collisions at high energy,” Nucl. Phys., Ser. B 9, 331 (1969).

    Article  ADS  Google Scholar 

  27. L. Liu, Y. Zhang, and Y. Wu, “On the random cascading model study of anomalous scaling in multiparticle production with continuously diminishing scale,” Zeitschrift f. Physik, Ser. C 69, 323 (1995/1996).

    Article  Google Scholar 

  28. D. Ghosh, A. Deb, J. Ghosh, et al., “Evidence of self-affine pion multiplicity fluctuation in relativistic and ultra-relativistic nuclear collisions,” Int. J. Mod. Phys., Ser. A 21, 1053 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Ghosh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Deb, A., Mondal, M. et al. Void fluctuation study of compound hadrons: Signatures of quark-hadron phase transition. Phys. Part. Nuclei Lett. 12, 246–250 (2015). https://doi.org/10.1134/S1547477115020120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115020120

Keywords

Navigation