Skip to main content

Advertisement

Log in

Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

One of the causes of autoimmune diseases is the production of antibodies to extracellular loops of hormonal receptors coupled with heterotrimeric G-proteins (GPCR) and to ectodomains of receptors with tyrosine kinase activity. In recent years, the range of these diseases has considerably extended, raising interest to the mechanisms of their genesis and actualizing the search for effective ways of their prevention and treatment. The antibodies against extracellular regions of α1-, β1- and β2-adrenergic receptors and m2-muscarinic acetylcholine receptors (m2-MAChR) were found in patients with various forms of cardiomyopathy and other pathologies of the cardiovascular system; the antibodies against m3-MAChR were detected in Sjögren’s syndrome and biliary cirrhosis; the antibodies against angiotensin receptors type 2 were found in pregnant women with pre-eclampsia and in different forms of hypertension; the antibodies to thyroid-stimulating hormone receptor were detected in Graves’ disease and other autoimmune thyroid pathologies. The role of antibodies specific to the ectodomain of muscle specific receptor tyrosine kinase in the development of generalized myasthenia and those against the extracellular domain of platelet-derived growth factor receptor in the development of systemic sclerosis and other fibroses was shown. In the present review, we systematize and analyze the data on the molecular mechanisms that underlie the production of antibodies to GPCR and receptor tyrosine kinases and determine the development of autoimmune diseases they induce. Possible approaches toward their prevention and correction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Root-Bernstein, R, Antigenic complementarity in the induction of autoimmunity: a general theory and review, Autoimmun. Rev., 2007, vol. 6, pp. 272–277.

    Article  CAS  PubMed  Google Scholar 

  2. Bajic, G., Degn, S.E., Thiel, S., and Andersen, G.R, Complement activation, regulation, and molecular basis for complement-related diseases, EMBO J., 2015, vol. 34, pp. 2735–2757.

    CAS  PubMed  Google Scholar 

  3. Cho, J.H. and Feldman, M, Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies, Nature Med., 2015, vol. 21, pp. 730–738.

    Article  CAS  PubMed  Google Scholar 

  4. Smulski, C., Labovsky, V., Levy, G., Hontebeyrie, M., Hoebeke, J., and Levin, M.J, Structural basis of the cross-reaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor, FASEB J., 2006, vol. 20, pp. 1396–1406.

    Article  CAS  PubMed  Google Scholar 

  5. Hampe, C.S, Protective role of anti-idiotypic antibodies in autoimmunity-lessons for type 1 diabetes, Autoimmunity, 2012, vol. 45, pp. 320–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sherer, Y. and Shoenfeld, Y, The idiotypic network in antinuclear-antibody-associated diseases, Int. Arch. Allergy Immunol., 2000, vol. 123, pp. 10–15.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Lin, S., Karakatsani, A., Rüegg, M.A., and Kröger, S, Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles, Eur. J. Neurosci., 2015, vol. 41, pp. 69–78.

    Article  PubMed  Google Scholar 

  8. Jing, L., Lefebvre, J.L., Gordon, L.R., and Granato, M, Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor, Neuron, 2009, vol. 61, pp. 721–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, M. and Shen, K., WNTs in synapse formation and neuronal circuitry, EMBO J., 2012, vol. 31, pp. 2697–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strochlic, L., Cartaud, A., and Cartaud, J, The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions, Bioessays, 2005, vol. 27, pp. 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  11. Gordon, L.R., Gribble, K.D., Syrett, C.M., and Granato, M, Initiation of synapse formation by Wnt-induced MuSK endocytosis, Development, 2012, vol. 139, pp. 1023–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan-Sindhunata, M.B., Mathijssen, I.B., Smit, M., Baas, F., de Vries, J.I., van der Voorn, J.P., Kluijt, I., Hagen, M.A., Blom, E.W., Sistermans, E., Meijers-Heijboer, H., Waisfisz, Q., Weiss, M.M., and Groffen, A.J, Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence, Eur. J. Hum. Genet., 2015, vol. 23, pp. 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  13. Hoch, W., McConville, J., Helms, S., Newsom-Davis, J., Melms, A., and Vincent, A., Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies, Nature Med., 2001, vol. 7, pp. 365–368.

    Article  CAS  PubMed  Google Scholar 

  14. Evoli, A., Tonali, P.A., Padua, L., Monaco, M.L., Scuderi, F., Batocchi, A.P., Marino, M., and Bartoccioni, E, Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis, Brain, 2003, vol. 126, pp. 2304–2311.

    Article  PubMed  Google Scholar 

  15. Guptill, J.T., Sanders, D.B., and Evoli, A., Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts, Muscle Nerve, 2011, vol. 44, pp. 36–40.

    Article  PubMed  Google Scholar 

  16. Takamori, M., Nakamura, T., and Motomura, M, Antibodies against Wnt receptor of muscle-specific tyrosine kinase in myasthenia gravis, J. Neuroimmunol., 2013, vol. 254, pp. 183–186.

    Article  CAS  PubMed  Google Scholar 

  17. McConville, J., Farrugia, M.E., Beeson, D., Kishore, U., Metcalfe, R., Newsom-Davis, J., and Vincent, A, Detection and characterization of MuSK antibodies in seronegative myasthenia gravis, Ann. Neurol., 2004, vol. 55, pp. 580–584.

    Article  CAS  PubMed  Google Scholar 

  18. Niks, E.H., van Leeuwen, Y., Leite, M.I., Dekker, F.W., Wintzen, A.R., Wirtz, P.W., Vincent, A., van Tol, M.J., Jol-van der Zijde, C.M., and Verschuuren, J.J, Clinical fluctuations in MuSK myasthenia gravis are related to antigenspecific IgG4 instead of IgG1}, J. Neuroimmunol., 2008, vol. 195, pp. 151–156.

    Article  CAS  PubMed  Google Scholar 

  19. Lauriola, L., Ranelletti, F., Maggiano, N., Guerriero, M., Punzi, C., Marsili, F., Bartoccioni, E., and Evoli, A, Thymus changes in anti-MuSKpositive and -negative myasthenia gravis, Neurology, 2005, vol. 64, pp. 536–538.

    Article  CAS  PubMed  Google Scholar 

  20. Leite, M.I., Ströbel, P., Jones, M., Micklem, K., Moritz, R., Gold, R., Niks, E.H., Berrih-Aknin, S., Scaravilli, F., Canelhas, A., Marx, A., Newsom-Davis, J., Willcox, N., and Vincent, A, Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG, Ann. Neurol., 2005, vol. 57, pp. 444–448.

    Article  PubMed  Google Scholar 

  21. Evoli, A., Bianchi, M.R., Riso, R., Minicuci, G.M., Batocchi, A.P., Servidei, S., Scuderi, F., and Bartoccioni, E, Response to therapy in myasthenia gravis with anti-MuSK antibodies, Ann. N. Y. Acad. Sci., 2008, vol. 1132, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  22. Baroni, S.S., Santillo, M., Bevilacqua, F., Luchetti, M., Spadoni, T., Mancini, M., Fraticelli, P., Sambo, P., Funaro, A., Kazlauskas, A., Avvedimento, E.V., and Gabrielli, A., Stimulatory auto-antibodies to the PDGF receptor in systemic sclerosis, N. Engl. J. Med., 2006, vol. 354, pp. 2667–2676.

  23. Svegliati, S., Olivieri, A., Campelli, N., Luchetti, M., Poloni, A., Trappolini, S., Moroncini, G., Bacigalupo, A., Leoni, P., Avvedimento, E.V., and Gabrielli, A, Stimulatory autoantibodies to PDGF receptor in patients with extensive chronic graft-versus-host disease, Blood, 2007, vol. 110, pp. 237–241.

    Article  CAS  PubMed  Google Scholar 

  24. Kurasawa, K., Arai, S., Owada, T., Maezawa, R., Kumano, K., and Fukuda, T, Autoantibodies against platelet-derived growth factor receptor alpha in patients with systemic lupus erythematosus, Mod. Rheumatol., 2010, vol. 20, pp. 458–465.

    Article  CAS  PubMed  Google Scholar 

  25. Daoussis, D., Liossis, S.N., Yiannopoulos, G., and Andonopoulos, A.P., B-cell depletion therapy in systemic sclerosis: experimental rationale and update on clinical evidence, Int. J. Rheumatol., 2011, vol. 2011. e214013. doi: 10.1155/2011/214013.

    Google Scholar 

  26. Saito, Y., Haendeler, J., Hojo, Y., Yamamoto, K., and Berk, B.C, Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation, Mol. Cell Biol., 2001, vol. 21, pp. 6387–6394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graves, L.M., Han, J., and Earp, H.S., Transactivation of the EGF receptor: is the PDGF receptor an unexpected accomplice? Mol. Interv., 2002, vol. 2, pp. 208–212.

  28. Arts, M.R., Baron, M., Chokr, N., and Fritzler, M.J, Canadian Scleroderma Research Group (CSRG), Servant M.J. Systemic sclerosis immunoglobulin induces growth and a pro-fibrotic state in vascular smooth muscle cells through the epidermal growth factor receptor, PLoS One, 2014, vol. 9. e100035. doi: 10.1371/journal. pone.0100035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jo, M. and Jung, S.T, Engineering therapeutic antibodies targeting G-protein-coupled receptors, Exp. Mol. Med., 2016, vol. 48. e207. doi: 10.1038/ emm.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hieble, J.P, Subclassification and nomenclature of alpha- and beta-adrenoceptors, Curr. Top. Med. Chem., 2007, vol. 7, pp. 129–134.

    Article  CAS  PubMed  Google Scholar 

  31. Mijares, A., Lesbesgue, D., Wallukat, G., and Hoebeke, J, From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β2-adrenoceptor antibody behave as antagonist, Mol. Pharmacol., 2000, vol. 58, pp. 373–379.

    CAS  PubMed  Google Scholar 

  32. Li, H., Kem, D.C., Zhang, L., Huang, B., Liles, C., Benbrook, A., Gali, H., Veitla, V., Scherlag, B.J., Cunningham, M.W., and Yu, X, Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit, Hypertension, 2015, vol. 65, pp. 793–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fukuda, Y., Miyoshi, S., Tanimoto, K., Oota, K., Fujikura, K., Iwata, M., Baba, A., Hagiwara, Y., Yoshikawa, T., Mitamura, H., and Ogawa, S, Autoimmunity against the second extracellular loop of β1-adrenergic receptors induces early afterdepolarization and decreases in K-channel density in rabbits, J. Am. Coll. Cardiol., 2004, vol. 43, pp. 1090–1100.

    Article  CAS  PubMed  Google Scholar 

  34. Buvall, L., Bollano, E., Chen, J., Shultze, W., and Fu, M, Phenotype of early cardiomyopathic changes induced by active immunization of rats with a synthetic peptide corresponding to the second extracellular loop of the human beta-adrenergic receptor, Clin. Exp. Immunol., 2006, vol. 143, pp. 209–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jahns, R., Boivin, V., Siegmund, C., Inselmann, G., Lohse, M.J., and Boege, F, Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure, Circulation, 1999, vol. 99, pp. 649–654.

    Article  CAS  PubMed  Google Scholar 

  36. Jane-wit, D., Altuntas, C.Z., Johnson, J.M., Yong, S., Wickley, P.J., Clark, P., Wang, Q., Popovic, Z.B., Penn, M.S., Damron, D.S., Perez, D.M., and Tuohy, V.K., Beta1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis, Circulation, 2007, vol. 116, pp. 399–410.

    Article  CAS  PubMed  Google Scholar 

  37. Staudt, A., Eichler, P., Trimpert, C., Felic, S.B., and Greinacher, A., Fcγ receptor IIa on cardiomyocytes and their potential functional relevance in dilated cardiomyopathy, J. Am. Coll. Cardiol., 2007, vol. 49, pp. 1684–1692.

    Article  CAS  PubMed  Google Scholar 

  38. Bornholz, B., Roggenbuck, D., Jahns, R., and Boege, F, Diagnostic and therapeutic aspects of β1-adrenergic receptor autoantibodies in human heart disease, Autoimmun Rev., 2014, vol. 13, pp. 954–962.

    Article  CAS  PubMed  Google Scholar 

  39. Stavrakis, S., Yu, X., Patterson, E., Huang, S., Hamlett, S.R., Chalmers, L., Pappy, R., Cunningham, M.W., Morshed, S.A., Davies, T.F., Lazzara, R., and Kem, D.C, Activating autoantibodies to the β1 adrenergic and m2 muscarinic receptors facilitate atria fibrillation in patients with Graves’ hyperthyroidism, J. Am. Coll. Cardiol., 2009, vol. 54, pp. 1309–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahler, E., Hoebeke, J., and Levin, M.J, Structural and functional complexity of the humoral response against the Trypanosoma cruzi ribosomal P2β protein in patients with chronic Chagas’ heart disease, Clin. Exp. Immunol., 2004, vol. 136, pp. 527–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonney, K.M., Gifford, K.M., Taylor, J.M., Chen, C.I., and Engman, D.M, Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated, Parasite Immunol., 2013, vol. 35, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  42. Fu, M.L., Herlitz, H., Wallukat, G., Hilme, E., Hedner, T., Hoebeke, J., and Hjalmarson, A, Functional autoimmune epitope on α1-adrenergic receptors in patients with malignant hypertension, Lancet, 1994, vol. 344, pp. 1660–1663.

    Article  CAS  PubMed  Google Scholar 

  43. Luther, H.P., Homuth, V., and Wallukat, G, Alpha1-adrenergic receptor antibodies in patients with primary hypertension, Hypertension, 1997, vol. 29, pp. 678–682.

    Article  CAS  PubMed  Google Scholar 

  44. Wenzel, K., Haase, H., Wallukat, G., Derer, W., Bartel, S., Homuth, V., Herse, F., Hubner, N., Schulz, H., Janczikowski, M., Lindschau, C., Schroeder, C., Verlohren, S., Morano, I., Muller, D.N., Luft, F.C., Dietz, R., Dechend, R., and Karczewski, P, Potential relevance of α1-adrenergic receptor autoantibodies in refractory hypertension, PLoS One, 2008, vol. 3. e3742. doi: 10.1371/journal. pone.0003742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dandel, M., Wallukat, G., Englert, A., and Hetzer, R, Immunoadsorption therapy for dilated cardiomyopathy and pulmonary arterial hypertension, Atheroscler. Suppl., 2013, vol. 14, pp. 203–211.

    Article  CAS  PubMed  Google Scholar 

  46. Karczewski, P., Hempel, P., Kunze, R., and Bimmler, M, Agonistic autoantibodies to the a1- adrenergic receptor and the β2-adrenergic receptor in Alzheimer’s and vascular dementia, Scand. J. Immunol., 2012, vol. 75, pp. 524–530.

    Article  CAS  PubMed  Google Scholar 

  47. Li, H., Kem, D.C., Reim, S., Khan, M., Vanderlinde-Wood, M., Zillner, C., Collier, D., Liles, C., Hill, M.A., Cunningham, M.W., Aston, C.E., and Yu, X, Agonistic autoantibodies as vasodilators in orthostatic hypotension: a new mechanism, Hypertension, 2012, vol. 59, pp. 402–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H., Zuccolo, J., Kem, D.C., Zillner, C., Lee, J., Smith, K., James, J.A., Cunningham, M.W., and Yu, X, Implications of a vasodilatory human monoclonal autoantibody in postural hypotension, J. Biol. Chem., 2013, vol. 288, pp. 30734–30741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H., Yu, X., Liles, C., Khan, M., Vanderlinde-Wood, M., Galloway, A., Zillner, C., Benbrook, A., Reim, S., Collier, D., Hill, M.A., Raj, S.R., Okamoto, L.E., Cunningham, M.W., Aston, C.E., and Kem, D.C, Autoimmune basis for postural tachycardia syndrome, J. Am. Heart Assoc., 2014, vol. 3. e000755.doi: 10.1161/ JAHA.113.000755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Loebel, M., Grabowski, P., Heidecke, H., Bauer, S., Hanitsch, L.G., Wittke, K., Meisel, C., Reinke, P., Volk, H.D., Fluge, A., Mella, O., and Scheibenbogen, C, Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome, Brain Behav. Immun., 2016, vol. 52, pp. 32–39.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, H., Han, H., Zhang, L., Shi, H., Schram, G., Nattel, S., and Wang, Z, Expression of multiple subtypes of muscarinic receptors and cellular distribution in the human heart, Mol. Pharmacol., 2001, vol. 59, pp. 1029–1036.

    CAS  PubMed  Google Scholar 

  52. Borda, T, Perez Rivera, R., Joensen, L., Gomez, R.M., and Sterin-Borda, L., Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: molecular interaction, J. Immunol., 2002, vol. 168, pp. 3667–3674.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka, S., Matsunaga, H., Kimura, M., Tatsumi, Ki, Hidaka, Y., Takano, T., Uema, T., Takeda, M., and Amino, N, Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders, J. Neuroimmunol., 2003, vol. 141, pp. 155–164.

    Article  CAS  PubMed  Google Scholar 

  54. Goin, J.C., Borda, E., Leiros, C.P., Storino, R., and Sterin-Borda, L, Identification of antibodies with muscarinic cholinergic activity in human Chagas’ disease: pathological implications, J. Auton. Nerv. Syst., 1994, vol. 47, pp. 45–52.

    Article  CAS  PubMed  Google Scholar 

  55. Kohr, D., Singh, P., Tschernatsch, M., Kaps, M., Pouokam, E., Diener, M., Kummer, W., Birklein, F., Vincent, A., Goebel, A., Wallukat, G., and Blaes, F, Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome, Pain, 2011, vol. 152, pp. 2690–2700.

    Article  CAS  PubMed  Google Scholar 

  56. Fu, L.X., Magnusson, Y., Bergh, C.H., Liljeqvist, J.A., Waagstein, F., Hjalmarson, A., and Hoebeke, J, Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy, J. Clin. Invest., 1993, vol. 91, pp. 1964–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koo, N.Y., Li, J., Hwang, S.M., Choi, S.Y., Lee, S.J., Oh, S.B., Kim, J.S., Lee, E.B., Song, Y.W., and Park, K, Functional epitope of muscarinic type 3 receptor which interacts with autoantibodies from Sjogren’s syndrome patients, Rheumatology (Oxford), 2008, vol. 47, pp. 828–833.

    Article  CAS  Google Scholar 

  58. Berg, C.P., Blume, K., Lauber, K., Gregor, M., Berg, P.A., Wesselborg, S., and Stein, G.M, Autoantibodies to muscarinic acetylcholine receptors found in patients with primary biliary cirrhosis, BMC Gastroenterol., 2010, vol. 10. e120. doi: 10.1186/1471-230X-10-120

    Article  CAS  Google Scholar 

  59. Tsuboi, H., Ohira, H., Asashima, H., Tsuzuki, S., Iizuka, M., Matsuo, N., Kondo, Y., Matsumoto, I., and Sumida, T., Anti-M3 muscarinic acetylcholine receptor antibodies in patients with primary biliary cirrhosis, Hepatol. Res., 2014, vol. 44, pp. E471–E479.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, N., Shin, Y., Choi, S., Namkoong, E., Kim, M., Lee, J., Song, Y., and Park, K, Effect of antimuscarinic autoantibodies in primary Sjögren’s syndrome, J. Dent. Res., 2015, vol. 94, pp. 722–728.

    Article  CAS  PubMed  Google Scholar 

  61. Murphy, T.J., Alexander, R.W., Griendling, K.K., Runge, M.S., and Bernstein, K.E, Isolation of a cDNA encoding the vascular type-1 angiotensin IIreceptor, Nature, 1991, vol. 351, pp. 233–236.

    Article  CAS  PubMed  Google Scholar 

  62. Karnik, S.S., Unal, H., Kemp, J.R., Tirupula, K.C., Eguchi, S., Vanderheyden, P.M., and Thomas, W.G, International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimuli, Pharmacol. Rev., 2015, vol. 67, pp. 754–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Higuchi, S., Ohtsu, H., Suzuki, H., Shirai, H., Frank, G.D., and Eguchi, S, Angiotensin IIsignal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology, Clin. Sci. (Lond), 2007, vol. 112, pp. 417–428.

    Article  CAS  Google Scholar 

  64. Batenburg, W.W., Garrelds, I.M., Bernasconi, C.C., Juillerat-Jeanneret, L., van Kats, J.P., Saxena, P.R., and Danser, A.H, Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries, Circulation, 2004, vol. 109, pp. 2296–2301.

    Article  CAS  PubMed  Google Scholar 

  65. Caruso-Neves, C., Kwon, S.H., and Guggino, W.B, Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 17513–17518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wallukat, G., Homuth, V., Fischer, T., Lindschau, C., Horstkamp, B., Jüpner, A., Baur, E., Nissen, E., Vetter, K., Neichel, D., Dudenhausen, J.W., Haller, H., and Luft, F.C, Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor, J. Clin. Invest., 1999, vol. 103, pp. 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walther, T., Wallukat, G., Jank, A., Bartel, S., Schultheiss, H.P., Faber, R., and Stepan, H, Angiotensin II type 1 receptor agonistic antibodies reflect fundamental alterations in the uteroplacental vasculature, Hypertension, 2005, vol. 46, pp. 1275–1279.

    Article  CAS  PubMed  Google Scholar 

  68. Siddiqui, A.H., Irani, R.A., Blackwell, S.C., Ramin, S.M., Kellems, R.E., and Xia, Y, Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: correlation with disease severity, Hypertension, 2010, vol. 55, pp. 386–393.

    Article  CAS  PubMed  Google Scholar 

  69. Xia, Y. and Kellems, R.E, Receptor-activating autoantibodies and disease: preeclampsia and beyond, Expert Rev. Clin. Immunol., 2011, vol. 7, pp. 659–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dechend, R., Viedt, C., Müller, D.N., Ugele, B., Brandes, R.P., Wallukat, G., Park, J.K., Janke, J., Barta, P., Theuer, J., Fiebeler, A., Homuth, V., Dietz, R., Haller, H., Kreuzer, J., and Luft, F.C., AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase, Circulation, 2003, vol. 107, pp. 1632–1639.

    Article  CAS  PubMed  Google Scholar 

  71. Xia, Y., Wen, H., Bobst, S., Day, M.C., and Kellems, R.E, Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells, J. Soc. Gynecol. Invest., 2003, vol. 10, pp. 82–93.

    Article  CAS  Google Scholar 

  72. Bobst, S.M., Day, M.C., Gilstrap, L.C., Xia, Y., and Kellems, R.E, Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-1 secretion, Am. J. Hypertens., 2005, vol. 18, pp. 330–336.

    Article  CAS  PubMed  Google Scholar 

  73. Fu, M.L., Herlitz, H., Schulze, W., Wallukat, G., Micke, P., Eftekhari, P., Sjögren, K.G., Hjalmarson, A., Müller-Esterl, W., and Hoebeke, J, Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension, J. Hypertens., 2000, vol. 18, pp. 945–953.

    Article  CAS  PubMed  Google Scholar 

  74. Dörffel, Y., Wallukat, G., Bochnig, N., Homuth, V., Herberg, M., Dörffel, W., Pruss, A., Chaoui, R., and Scholze, J, Agonistic AT1 receptor autoantibodies and monocyte stimulation in hypertensive patients, Am. J. Hypertens., 2003, vol. 16, pp. 827–833.

    Article  PubMed  CAS  Google Scholar 

  75. Dragun, D., Müller, D.N, Bräsen, J.H., Fritsche, L., Nieminen-Kelhä, M., Dechend, R., Kintscher, U., Rudolph, B., Hoebeke, J., Eckert, D., Mazak, I., Plehm, R., Schönemann, C., Unger, T., Budde, K., Neumayer, H.H., Luft, F.C., and Wallucat, G., Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection, N. Engl. J. Med., 2005, vol. 352, pp. 558–569.

    Article  CAS  PubMed  Google Scholar 

  76. Dragun, D, The role of angiotensin II type 1 receptor-activating antibodies in renal allograft vascular rejection, Pediatr. Nephrol., 2007, vol. 22, pp. 911–914.

    Article  PubMed  Google Scholar 

  77. Okruhlicova, L., Morwinski, R., Schulze, W., Bartel, S., Weisman, P., Tribulova, N., and Wallukat, G, Autoantibodies against G-protein coupled receptors modulate heart mast cells, Cell. Mol. Immunol., 2007, vol. 4, pp. 127–133.

    CAS  PubMed  Google Scholar 

  78. Liles, C., Li, H., Veitla, V., Liles, J.T., Murphy, T.A., Cunningham, M.W., Yu, X., and Kem, D.C., AT2R autoantibodies block angiotensin II and AT1R autoantibody-induced vasoconstriction, Hypertension, 2015, vol. 66, pp. 830–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tomer, Y. and Huber, A, The etiology of autoimmune thyroid disease: a story of genes and environment, J. Autoimmun., 2009, vol. 32, pp. 231–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ginsberg, J. and von Westarp C, Clinical applications of assays for thyrotropin-receptor antibodies in Graves’ disease, CMAJ, 1986, vol. 134, pp. 1141–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bahn, R.S., Dutton, C.M., Natt, N., Joba, W., Spitzweg, C., and Heufelder, A.E, Thyrotropin receptor expression in Graves’ orbital adipose/ connective tissues: potential autoantigen in Graves’ ophthalmopathy, J. Clin. Endocrinol. Metab., 1998, vol. 83, pp. 998–1002.

    CAS  PubMed  Google Scholar 

  82. Urizar, E., Montanelli, L., Loy, T., Bonomi, M., Swillens, S., Gales, C., Bouvier, M., Smits, G., Vassart, G., and Costagliola, S, Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity, EMBO J., 2005, vol. 24, pp. 1954–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Latif, R., Michalek, K., and Davies, T.F, Subunit interactions influence TSHR multimerization, Mol. Endocrinol., 2010, vol. 24, pp. 2009–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen, M.D., Neumann, S., and Gershengorn, M.C, Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling, FASEB J., 2011, vol. 25, pp. 3687–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Núñez Miguel, R., Sanders, J., Sanders, P., Young, S., Clark, J., Kabelis, K., Wilmot, J., Evans, M., Roberts, E., Hu, X., Furmaniak, J., and Rees Smith, B, Similarities and differences in interactions of thyroid stimulating and blocking autoantibodies with the TSH receptor, J. Mol. Endocrinol., 2012, vol. 49, pp. 137–151.

    Article  PubMed  CAS  Google Scholar 

  86. Ando, T., Latif, R., Daniel, S., Eguchi, K., and Davies, T.F, Dissecting linear and conformational epitopes on the native thyrotropin receptor, Endocrinology, 2004, vol. 145, pp. 5185–5193.

    Article  CAS  PubMed  Google Scholar 

  87. Morshed, S.A., Ando, T., Latif, R., and Davies, T.F, Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades, Endocrinology, 2010, vol. 151, pp. 5537–5549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mandac, J.C., Chaudhry, S., Sherman, K.E., and Tomer, Y, The clinical and physiological spectrum of interferon-α induced thyroiditis: toward a new classification, Hepatology, 2006, vol. 43, pp. 661–672.

    Article  CAS  PubMed  Google Scholar 

  89. Stefan, M., Wei, C., Lombardi, A., Li, C.W., Concepcion, E.S., Inabnet, W.B., Owen, R., Zhang, W., and Tomer, Y., Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 12562–12567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shpakov, A., Chistyakova, O., Derkach, K., and Bondareva, V, Hormonal signaling systems of the brain in diabetes mellitus, Neurodegenerative Diseases — Processes, Prevention, Protection and Monitoring, Ed., R.C.-C., Chang, Rijeka, Croatia, 2011, pp. 349–386.

    Google Scholar 

  91. Shpakov, A.O. and Derkach, K.V, Peptidergic signaling systems of the brain in diabetes melliyus, Tsitol., 2012, vol. 54, no. 10, pp. 733–741.

    CAS  Google Scholar 

  92. Begriche, K., Girardet, C., McDonald, P., and Butler, A.A., Melanocortin-3 receptors and metabolic homeostasis, Prog. Mol. Biol. Transl. Sci., 2013, vol. 114, pp. 109–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kievit, P., Halem, H., Marks, D.L., Dong, J.Z., Glavas, M.M., Sinnayah, P., Pranger, L., Cowley, M.A., Grove, K.L., and Culler, M.D, Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques, Diabetes, 2013, vol. 62, pp. 490–497.

    CAS  PubMed  Google Scholar 

  94. Renquist, B.J., Lippert, R.N., Sebag, J.A., Ellacott, K.L., and Cone, R.D, Physiological roles of the melanocortin MC3 receptor, Eur. J. Pharmacol., 2011, vol. 660, pp. 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peter, J.C., Nicholson, J.R., Heydet, D., Lecourt, A.C., Hoebeke, J., and Hofbauer, K.G, Antibodies against the melanocortin-4 receptor act as inverse agonists in vitro and in vivo, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, pp. R2151–R2158.

    Article  CAS  PubMed  Google Scholar 

  96. Hofbauer, K.G., Lecourt, A.C., and Peter, J.C, Antibodies as pharmacologic tools for studies on the regulation of energy balance, Nutrition, 2008, vol. 24, pp. 791–797.

    Article  CAS  PubMed  Google Scholar 

  97. Peter, J.C., Bekel, A., Lecourt, A.C., Zipfel, G., Eftekhari, P., Nesslinger, M., Breidert, M., Muller, S., Kessler, L., and Hofbauer, K.G., Anti-melanocortin-4 receptor autoantibodies in obesity, J. Clin. Endocrinol. Metab., 2009, vol. 94, pp. 793–800.

    Article  CAS  PubMed  Google Scholar 

  98. Derkach, K.V., Shpakova, E.A., Zharova, O.A., and Shpakov, A.O, Metabolic changes in rats immunized with BSA-conjugated peptide, a derivative of the N-terminal region of melanocortin receptor type 4, Dokl. Akad. Nauk, 2014, vol. 458, no. 1, pp. 102–105.

    Google Scholar 

  99. Shpakov, A.O., Derkach, K.V., Zharova, O.A., and Shpakova, E.A, Functional activity of adenylyl cyclase system in the brain of rats with metabolic syndrome induced by immunization with a peptide 11–25 of melanocortin receptor type 4, Neirokhim., 2015, vol. 32, no. 1, pp. 37–47.

    Google Scholar 

  100. Peter, J.C., Zipfel, G., Lecourt, A.C., Bekel, A., and Hofbauer, K.G, Antibodies raised against different extracellular loops of the melanocortin-3 receptor affect energy balance and autonomic function in rats, J. Recept. Signal. Transduct. Res., 2010, vol. 30, pp. 444–453.

    Article  CAS  PubMed  Google Scholar 

  101. Shpakov, A.O., Derkach, K.V., Zharova, O.A., Shapakova, E.A., and Bondareva, V.M, Changes in sensitivity of adenylyl cyclase to hormones in the brain, myocardium and testicles of rats immunized with a BSA-conjugated peptide 269–280 of melanocortin receptor type 3, Biol. Membr., 2015, vol. 32, no. 1, pp. 20–32.

    CAS  Google Scholar 

  102. Derkach, K.V., Shpakova, E.A., Zharova, O.A., Bondareva, V.M., and Shpakov, A.O, The influence of rat immunization with a BSA-conjugated peptide 269–280 of melanocortin receptor type 3 on metabolic parameters and functions of the thyroid gland, Tsitol., 2014, vol. 56, no. 11, pp. 850–857.

    CAS  Google Scholar 

  103. Todd, R.D. and Ciaranello, R.D, Demonstration of inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic child, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 612–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yuwiler, A., Shih, J.C., Chen, C.H., Ritvo, E.R., Hanna, G., Ellison, G.W., and King, B.H, Hyperserotoninemia and antiserotonin antibodies in autism and other disorders, J. Autism Dev. Disord., 1992, vol. 22, pp. 33–45.

    Article  CAS  PubMed  Google Scholar 

  105. Verdot, L., Garreau, B., Barthelemy, C., Martineau, J., Ferrer-Di-Martino, M., Muh, J.P., and Hoebeke, J, Immunoreactivity of sera to a peptide derived from the serotonin 5-HT1A receptor in a group of children with developmental disorders: possible role in non-autistic epilepsy, Int. J. Mol. Med., 1998, vol. 1, pp. 185–189.

    CAS  PubMed  Google Scholar 

  106. Derkach, K.V., Shpakova, E.A., Tarasenko, I.I., Zharova, O.A., and Shpakov, A.O, Immunization with a peptide 189–205,a derivative of serotonin receptor subtype 1B,changes adenylyl cyclase sensitivity to hormones in the rat brain, Dokl. Akad. Nauk, 2015, vol. 463, no. 3, pp. 358–361.

    Google Scholar 

  107. Eftekhari, P., Roegel, J.C., Lezoualc’h, F., Fischmeister, R., Imbs, J.L., and Hoebeke, J, Induction of neonatal lupus in pups of mice immunized with synthetic peptides derived from amino acid sequences of the serotoninergic 5-HT4 receptor, Eur. J. Immunol., 2001, vol. 31, pp. 573–579.

    Article  CAS  PubMed  Google Scholar 

  108. Kamel, R., Eftekhari, P., Clancy, R., Buyon, J.P., and Hoebeke, J, Autoantibodies against the serotoninergic 5-HT4 receptor and congenital heart block: a reassessment, J. Autoimmun., 2005, vol. 25, pp. 72–76.

    Article  CAS  PubMed  Google Scholar 

  109. Breidert, M., Wö rdehoff, S., Hansen, A., and Eftekhari, P, Autoantibodies against serotoninergic 5-HT4 receptor in patients with heart failure, Horm. Metab. Res., 2012, vol. 44, pp. 70–74.

    Article  CAS  PubMed  Google Scholar 

  110. Dale, R.C., Merheb, V., Pillai, S., Wang, D., Cantrill, L., Murphy, T.K., Ben-Pazi, H., Varadkar, S., Aumann, T.D., Horne, M.K., Church, A.J., Fath, T., and Brilot, F, Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders, Brain, 2012, vol. 135, pp. 3453–3468.

    Article  PubMed  Google Scholar 

  111. Felix, S.B., Staudt, A., Landsberger, M., Grosse, Y., Stangl, V., Spielhagen, T., Wallukat, G., Wernecke, K.D., Baumann, G., and Stangl, K, Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption, J. Am. Coll. Cardiol., 2002, vol. 39, pp. 646–652.

    Article  CAS  PubMed  Google Scholar 

  112. Baba, A., Akaishi, M., Shimada, M., Monkawa, T., Wakabayashi, Y., Takahashi, M., Nagatomo, Y., and Yoshikawa, T, Complete elimination of cardiodepressant IgG3 autoantibodies by immunoadsorption in patients with severe heart failure, Circ. J., 2010, vol. 74, pp. 1372–1378.

    Article  CAS  PubMed  Google Scholar 

  113. Wallukat, G., Müller, J., and Hetzer, R, Specific removal of β1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy, N. Engl. J. Med., 2002, vol. 347, p. 1806.

    Article  PubMed  Google Scholar 

  114. Münch, G., Boivin-Jahns, V., Holthoff, H.P., Adler, K., Lappo, M., Truöl, S., Degen, H., Steiger, N., Lohse, M.J., Jahns, R., and Ungerer, M, Administration of the cyclic peptide COR-1 in humans (phase I study): ex vivo measurements of anti-β1-adrenergic receptor antibody neutralization and of immune parameters, Eur. J. Heart Fail., 2012, vol. 14, pp. 1230–1239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, O.A. Zharova, K.V. Derkach, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 2, pp. 84—98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakov, A.O., Zharova, O.A. & Derkach, K.V. Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. J Evol Biochem Phys 53, 93–110 (2017). https://doi.org/10.1134/S1234567817020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1234567817020021

Keywords

Navigation