Skip to main content
Log in

Tris(diethylamino)silane—A new precursor compound for obtaining layers of silicon carbonitride

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Silicon carbonitride layers have been obtained by chemical deposition from the gas phase with thermal (LPCVD) and plasma (PECVD) activation of the gas mixture of helium with the new volatile siliconorganic compound tris(diethylamino)silane (Et 2N)3SiH (TDEAS) in the temperature region 373–1173 K. Thermodynamic simulation of the deposition processes from the gas mixture (TDEAS + He) in the temperature interval 300–1300 K and pressure interval P 0tot from 1 × 10−2 to 10 mm Hg has revealed the possibility of varying the equilibrium composition of the condensed phase depending on the synthesis temperature and the composition of the initial gas mixture. Physicochemical and functional properties of obtained layers were studied by complex of modern methods. It has been established that the chemical composition of the silicon carbonitride layers obtained by the PECVD method, depending on the deposition conditions, approaches that of silicon oxynitride or nitride, and the composition of those obtained by the LPCVD method approaches that of silicon carbide. The presence of nanocrystals with a phase composition close to the standard α-Si3N4 phase and of carbon inclusions has been found in the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badzian, A., Badzian, T., Roy, R., and Drawl, W., Silicon Carbonitride: A New Hard Material and Its Relation to the Confusion about “Harder Than Diamond” C3N4, Thin Solid Films, 1999, vol. 354, nos. 1–2, pp. 148–153.

    Article  CAS  Google Scholar 

  2. Bendeddouche, A., Berjoan, R., Beche, E., and Hillel, R., Hardness and Stiffness of Amorphous SiCxNy Chemical Vapor Deposited Coatings, Surf. Coat. Technol., 1999, vol. 111, pp. 184–190.

    Article  CAS  Google Scholar 

  3. He, X.-M., Taylor, T.N., Lillard, R.S., Walter, K.C., and Nastasi, M., Bonding Structure and Properties of Ion Enhanced Reactive Magnetron Sputtered Silicon Carbonitride Films, J. Phys.: Condens. Matter, 2000, vol. 12, pp. L591–L597.

    Article  CAS  Google Scholar 

  4. Thärigen, T., Lippold, G., Riede, V., Lorenz, M., Koivusaari, K.J., Lorenz, D., Mosch, S., Grau, P., Hesse, R., Streubel, P., and Szargan, R., Hard Amorphous CSixNy Thin Films Deposited by RF Nitrogen Plasma Assisted Pulsed Laser Ablation of Mixed Graphite/Si3N4-Targets, Thin Solid Films, 1999, vol. 348, nos. 1–2, pp. 103–113.

    Article  Google Scholar 

  5. Mishra, S.K., Nano and Nanocomposite Superhard Coatings of Silicon Carbonitride and Titanium Diboride by Magnetron Sputtering, Int. J. Appl. Ceram. Technol., 2009, vol. 6, no. 3, pp. 345–354.

    Article  CAS  Google Scholar 

  6. Liew, L.-A., Liu, Y., Luo, R., Cross, T., An, L., Bright, V.M., Dunn, M.L., Daily, J.W., and Raj, R., Application of Microforging in SiCN MEMS Structure Fabrication, Sens. Actuators, A, 2002, vol. 95, nos. 2–3, p. 120.

    Google Scholar 

  7. Berlind, T., Hellgren, N., Johansson, M.P., and Hultman, L., Microstructure, Mechanical Properties, and Wetting Behavior of Si-C-N Thin Films Grown by Reactive Magnetron Sputtering, Surf. Coat. Technol., 2001, vol. 141, nos. 2–3, pp. 145–155.

    Article  CAS  Google Scholar 

  8. Riedel, R., Kleebe, H.-J., Schonfelder, H., and Aldinger, F., A Covalent Micro/Nanocomposite Resistant to High-Temperature Oxidation, Nature (London), 1995, vol. 374, pp. 526–528.

    Article  CAS  Google Scholar 

  9. Zhang, D.H., Gao, Y., Wei, J., and Mo, Z.Q., Band Gap Engineering of SiCN Film Grown by Pulsed Laser Deposition, Thin Solid Films, 2000, vols. 377–378, pp. 607–610.

    Article  Google Scholar 

  10. Nakayamada, T., Matsuo, K., Hayashi, Y., Izumi, A., and Kadotani, Y., Evaluation of Corrosion Resistance of SiCN Films Deposited by HWCVD Using Organic Liquid Materials, Thin Solid Films, 2008, vol. 516, no. 5, pp. 656–658.

    Article  CAS  Google Scholar 

  11. Chen, K.H., Wu, J.-J., Wen, C.Y., Chen, L.C., Fan, C.W., Kuo, P.F., Chen, Y.F., and Huang, Y.S., Wide Band Gap Silicon Carbon Nitride Films Deposited by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition, Thin Solid Films, 1999, vols. 355–356, pp. 205–209.

    Article  Google Scholar 

  12. Gómez, F.J., Prieto, P., Elizalde, E., and Piqueras, J., SiCN Alloys Deposited by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition, Appl. Phys. Lett., 1996, vol. 69, no. 6, pp. 773–775.

    Article  Google Scholar 

  13. Soto, G., Samano, E.C., Machorro, R., and Cota, L., Growth of SiC and SiCxNy Films by Pulsed Laser Ablation of SiC in Ar and N2 Environments, J. Vac. Sci. Technol., A, 1998, vol. 16, no. 3, pp. 1311–1315.

    Article  CAS  Google Scholar 

  14. Chen, L.C., Lin, H.Y., Wong, C.S., Chen, K.H., Lin, S.T., Yu, Y.C., Wang, C.W., Lin, E.K., and Ling, K.C., Ellipsometric Study of Carbon Nitride Thin Films with and without Silicon Addition, Diamond Relat. Mater., 1999, vol. 8, nos. 2–5, pp. 618–622.

    Article  CAS  Google Scholar 

  15. Chen, W., Huang, C.C., Lin, Y.Y., Chen, L.C., and Chen, K.H., The Affinity of Si-N and Si-C Bonding in Amorphous Silicon Carbon Nitride (a-SiCN) Thin Film, Diamond Relat. Mater., 2005, vol. 14, pp. 1126–1130.

    Article  CAS  Google Scholar 

  16. Seifert, H.J., Peng, J., Lukas, H.L., and Aldinger, F., Phase Equilibria and Thermal Analysis of Si-C-N Ceramics, J. Alloys Compd., 2001, vol. 320, no. 2, pp. 251–261.

    Article  CAS  Google Scholar 

  17. Hirai, T. and Goto, T., Preparation of Amorphous Si3N4-C Plate by Chemical Vapour Deposition, J. Mater. Sci., 1981, vol. 16, pp. 17–23.

    Article  CAS  Google Scholar 

  18. Bae, Y.W., Du, H., Gallois, B., Gonsalvest, K.E., and Wilkens, B.J., Structure and Chemistry of Silicon Nitride and Silicon Carbonitride Thin Films Deposited from Ethylsilazane in Ammonia or Hydrogen, Chem. Mater., 1992, vol. 4, no. 2, pp. 478–483.

    Article  CAS  Google Scholar 

  19. Schonfelder, H., Aldinger, E., and Riedel, R., Silicon Carbonitrides—A Novel Class of Materials, J. Phys. IV, 1993, vol. 3, pp. 1293–1298.

    Article  Google Scholar 

  20. Bendeddouche, A., Berjoan, R., Beche, E., Merle-Mejean, T., Schamm, S., Serin, V., Taillades, G., Pradel, A., and Hillel, R., Structural Characterization of Amorphous SiCxNy Chemical Vapor Deposited Coatings, J. Appl. Phys., 1997, vol. 81, no. 9, pp. 6147–6154.

    Article  Google Scholar 

  21. Gong, Z., Wang, E.G., Xu, G.C., and Chen, Y., Influence of Deposition Condition and Hydrogen on Amorphous-to-Polycrystalline SiCN Films, Thin Solid Films, 1999, vol. 348, nos. 1–2, pp. 114–121.

    Article  CAS  Google Scholar 

  22. Sachdev, H. and Scheid, P., Formation of Silicon Carbide and Silicon Carbonitride by RF-Plasma CVD, Diamond Relat. Mater., 2001, vol. 10, nos. 3–7, pp. 1160–1164.

    Article  CAS  Google Scholar 

  23. Fainer, N.I., Rumyantsev, Yu.M., Kosinova, M.L., Yurjev, G.S., Maximovskii, E.A., and Kuznetsov, F.A., The Investigation of Properties of Silicon Nitride Films Obtained by RPECVD from Hexamethyldisilazane, Appl. Surf. Sci., 1997, vols. 113–114, pp. 614–617.

    Article  Google Scholar 

  24. Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., and Kuznetsov, F.A., RPECVD Thin Silicon Carbonitride Films Using Hexamethyldisilazane, J. Phys. IV, 1999, vol. 9, pp. Pr8-769–Pr8-775.

    Article  Google Scholar 

  25. Fainer, N.I., Kosinova, M.L., Yurjev, G.S., Maximovski, E.A., Rumyantsev, Yu.M., and Asanov, I.P., The Structure Study of Thin Boron and Silicon Carbonitride Films by Diffraction of Synchrotron Radiation, Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, vol. 448, nos. 1–2, pp. 294–298.

    Article  CAS  Google Scholar 

  26. Fainer, N.I., Kosinova, M.L., and Rumyantsev, Yu.M., Thin Films of Silicon and Boron Carbonitrides: Synthesis, Investigation of the Composition, and Structural Studies, Ross. Khim. Zh., 2001, vol. 45, no. 3, pp. 101–108.

    CAS  Google Scholar 

  27. Fainer, N.I., Maximovskii, E.A., Rumyantsev, Yu.M., Kosinova, M.L., and Kuznetsov, F.A., Study of Structure and Phase Composition of Nanocrystalline Silicon Carbonitride Films, Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 470, nos. 1–2, pp. 193–197.

    Article  CAS  Google Scholar 

  28. Fainer, N.I., Rumyantsev, Yu.M., Golubenko, A.N., Kosinova, M.L., and Kuznetsov, F.A., Synthesis of Nanocrystalline Silicon Carbonitride Films by Remote Plasma Enhanced Chemical Vapor Deposition Using the Mixture of Hexamethyldisilazane with Helium and Ammonia, J. Cryst. Growth, 2003, vol. 248, pp. 175–179.

    Article  CAS  Google Scholar 

  29. Fainer, N., Rumyantsev, Y., Kosinova, M., Maximovski, E., and Kesler, V., Low-k Dielectrics on Base of Silicon Carbon Nitride Films, Surf. Coat. Technol., 2007, vol. 201, pp. 9269–9274.

    Article  CAS  Google Scholar 

  30. Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., Maximovskii, E.A., and Kuznetsov, F.A., Thin Silicon Carbonitride Films Are Perspective Low-k Materials, J. Phys. Chem. Solids, 2008, vol. 69, nos. 2–3, pp. 661–668.

    Article  CAS  Google Scholar 

  31. Chen, L.C., Yang, C.Y., Bhusari, D.M., Chen, K.H., Lin, M.C., Lin, J.C., and Chuang, T.J., Formation of Crystalline Silicon Carbon Nitride Films by Microwave Plasma-Enhanced Chemical Vapor Deposition, Diamond Relat. Mater., 1996, vol. 5, nos. 3–5, pp. 514–518.

    Article  CAS  Google Scholar 

  32. Wrobel, A.M., Blaszczyk, I., Walkiewicz-Pietrzykowska, A., Tracz, A., Klemberg-Sapieha, J.E., Aoki, T., and Hatanaka, Y., Remote Hydrogen-Nitrogen Plasma Chemical Vapor Deposition from a Tetramethyldisilazane Source: Part 1. Mechanism of the Process, Structure, and Surface Morphology of Deposited Amorphous Hydrogenated Silicon Carbonitride Films, J. Mater. Chem., 2003, vol. 13, no. 4, pp. 731–737.

    Article  CAS  Google Scholar 

  33. Blaszczyk-Lezak, I., Wrobel, A.M., and Bielinski, D.M., Remote Hydrogen Microwave Plasma Chemical Vapor Deposition of Silicon Carbonitride Films from a (Dimethylamino)dimethylsilane Precursor: Compositional and Structural Dependencies of Film Properties, Diamond Relat. Mater., 2006, vol. 15, no. 10, pp. 1650–1658.

    Article  CAS  Google Scholar 

  34. Wrobel, A.M., Blaszczyk, I., and Walkiewicz-Pietrzykowska, A., Silicon Carbonitride Thin-Film Coatings Fabricated by Remote Hydrogen-Nitrogen Microwave Plasma Chemical Vapor Deposition from a Single-Source Precursor: Growth Process, Structure, and Properties of the Coatings, J. Appl. Polym. Sci., 2007, vol. 105, no. 1, pp. 122–129.

    Article  CAS  Google Scholar 

  35. Wrobel, A.M., Blaszczyk-Lezak, I., Uznanski, P., and Glebocki, B., Silicon Carbonitride (SiCN) Films by Remote Hydrogen Microwave Plasma CVD from Tris(dimethylamino)silane as Novel Single-Source Precursor, Chem. Vap. Deposition, 2010, vol. 16, nos. 7–9, pp. 211–215.

    Article  CAS  Google Scholar 

  36. Ishimaru, M., Naito, M., Hirotsu, Y., and Sickafus, K.E., Amorphous Structures of Silicon Carbonitride Formed by High-Dose Nitrogen Ion Implantation into Silicon Carbide, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 206, pp. 994–998.

    Article  CAS  Google Scholar 

  37. Suvorova, A.A., Nunney, T., and Suvorov, A.V., Fabrication of Si-C-N Compounds in Silicon Carbide by Ion Implantation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, vol. 267, nos. 8–9, pp. 1294–1298.

    Article  CAS  Google Scholar 

  38. Zhou, F., Yue, B., Wang, X., Wu, X., and Zhuge, L., Surface Roughness, Mechanical Properties, and Bonding Structure of Silicon Carbon Nitride Films Grown by Dual Ion Beam Sputtering, J. Alloys Compd., 2010, vol. 492, nos. 1–2, pp. 269–276.

    Article  CAS  Google Scholar 

  39. Hoche, H., Pusch, C., Riedel, R., Claudia, F., and Klein, A., Properties of SiCN Coatings for High Temperature Applications—Comparison of RF, DC, and HPPMS-Sputtering, Surf. Coat. Technol., 2010, vol. 205, pp. S21–S27.

    Article  CAS  Google Scholar 

  40. Du, X.-W., Fu, Y., Sun, J., Yao, P., and Cui, L., Intensive Light Emission from SiCN Films by Reactive RF Magnetron Sputtering, Mater. Chem. Phys., 2007, vol. 103, nos. 2–3, pp. 456–460.

    Article  CAS  Google Scholar 

  41. Tomasella, E., Rebib, F., Dubois, M., Cellier, J., and Jacquet, M., Structural and Optical Properties Studies of Sputtered a-SiCN Thin Films, J. Phys.: Conf. Ser., 2008, vol. 100, p. 082045.

  42. Hoche, H., Allebrandt, D., Bruns, M., Riedel, R., and Fasel, C., Relationship of Chemical and Structural Properties with the Tribological Behavior of Sputtered SiCN Films, Surf. Coat. Technol., 2008, vol. 202, nos. 22–23, pp. 5567–5571.

    Article  CAS  Google Scholar 

  43. Mishra, S.K. and Bhattacharyya, A.S., Effect of Substrate Temperature on the Adhesion Properties of Magnetron Sputtered Nano-Composite Si-C-N Hard Thin Films, Mater. Lett., 2008, vol. 62, no. 3, pp. 398–402.

    Article  CAS  Google Scholar 

  44. Li, W.L., Yang, J.L., Zhao, Y., and Fei, W., Effect of Assistant RF Plasma on Structure and Properties of SiCN Thin Films Prepared by RF Magnetron Sputtering of SiC Target, J. Alloys Compd., 2009, vol. 482, nos. 1–2, pp. 317–319.

    Article  CAS  Google Scholar 

  45. Kroke, E., Li, Y.-L., Konetschny, C., Lecomte, E.L., Fasel, C., and Riedel, R., Silazane Derived Ceramics and Related Materials, Mater. Sci. Eng., R, 2000, vol. 26, pp. 97–199.

    Article  Google Scholar 

  46. Bulou, S., Le Brizoual, L., Miska, P., de Poucques, L., Hugon, R., and Belmahi, M., a-SiCxNy Thin Films Deposited by a Microwave Plasma Assisted CVD Process Using a CH4/N2/Ar/HMDSN Mixture: Methane Rate Effect, Inst. Phys. Conf. Ser., 2010, vol. 12, pp. 012002–012005.

    Google Scholar 

  47. Voronkov, M.G., Sulimin, A.D., Yachmenev, V.V., Mirskov, R.G., Kokin, V.N., and Chernova, V.G., Preparation of Films of Silicon Nitride from Hexamethylcyclotrisilazane in the High-Frequency Glow Discharge, Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 5, pp. 1130–1132.

    CAS  Google Scholar 

  48. Brooks, T.A. and Hess, D.W., Plasma-Enhanced Chemical Vapor Deposition of Silicon Nitride from 1,1,3,3,5,5-Hexamethylcyclotrisilazane and Ammonia, Thin Solid Films, 1987, vol. 153, nos. 1–3, pp. 521–529.

    Article  CAS  Google Scholar 

  49. Brooks, T.A. and Hess, D.W., Deposition Chemistry and Structure of Plasma-Deposited Silicon Nitride Films from 1,1,3,3,5,5-Hexamethylcyclotrisilazane, J. Appl. Phys., 1988, vol. 64, no. 2, pp. 841–849.

    Article  CAS  Google Scholar 

  50. Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maximovskii, E.A., Use of Hexamethylcyclotrisilazane for Preparation of Transparent Films of Complex Compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.

    Article  CAS  Google Scholar 

  51. Fainer, N.I., Rumyantsev, Yu.M., Kesler, V.G., Maximovski, E.A., and Kuznetsov, F.A., Synthesis and Thermal Stability of Nanocomposite SiCxNy: H Films from Cycle Siliconorganic Precursor, Electrochem. Soc. Trans., 2009, vol. 25, pp. 921–926.

    CAS  Google Scholar 

  52. Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., Kesler, V.G., Maksimovskii, E.A., Ayupov, B.M., and Kuznetsov, F.A., Synthesis of Dielectric Silicon Carbonitride Films with Improved Optical and Mechanical Properties from Hexamethylcyclodisilazane, Glass Phys. Chem., 2011 (in press).

  53. Sysoev, S.V., Nikulina, L.D., Kosinova, M.L., Rakhlin, V.I., Tsyrendorzhieva, I.P., Lis, A.V., and Voronkov, M.G., Investigation of the Properties of Aminosilanes—Initial Materials for the Preparation of Films of the Phases in the Si-C-N System, Inorg. Mater., 2011, vol. 47, no. 12 pp. 1324–1329.

    Article  CAS  Google Scholar 

  54. Kiperman, S.L., Vvedenie v kinetiku geterogennykh kataliticheskikh reaktsii (Introduction to the Kinetics of Heterogeneous Catalytic Reactions), Moscow: Nauka, 1964 [in Russian].

    Google Scholar 

  55. Anderson, D.R., in Analysis Silicones, Smith, A.L., Ed., New York: Willey, 1974, Chap. 10, pp. 100–105.

    Google Scholar 

  56. Mundo, R.D., D’Agostino, R., Fracassii, F., and Palumbo, F., A Novel Organosilicon Source for Low-Temperature Plasma Deposition of Silicon Nitride—Like Thin Films, Plasma Processes Polym., 2005, vol. 2, no. 8, pp. 612–617.

    Article  Google Scholar 

  57. Wagner, C.D., Photoelectron and Auger Energies and the Auger Parameter—A Data Set, in Practical Surface Analysis: Volume 1. Auger and X-Ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1990.

    Google Scholar 

  58. Wagner, C.D., Riggs, W.M., Davies, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-Ray Photoelectron Spectroscopy: I, Eden Prairie, Minneapolis, United States: Perkin Elmer, 1978, vol. 1.

    Google Scholar 

  59. Wang, Y., Zhang, L., Xu, W., Jiang, T., Fan, Y., Jiang, D., and An, L., Effect of Thermal Initiator Concentration on Electrical Behavior of Polymer-Derived Amorphous SiCN Ceramics, J. Am. Ceram. Soc., 2008, vol. 91, no. 12, pp. 3971–3975.

    Article  CAS  Google Scholar 

  60. Varga, T., Navrotsky, A., Moats, J.L., Morcos, R.M., Poli, F., Saha, A., and Raj, R., Thermodynamically Stable SixOyCz Polymer-Like Amorphous Ceramics, J. Am. Ceram. Soc., 2007, vol. 90, no. 10, pp. 3213–3219.

    Article  CAS  Google Scholar 

  61. Trassl, S., Puchinger, M., Rossler, E., and Ziegler, G., Electrical Properties of Amorphous SiCxNyHz—Ceramics Derived from Polyvinylsilazane, J. Eur. Ceram. Soc., 2003, vol. 23, no. 5, pp. 781–789.

    Article  CAS  Google Scholar 

  62. Durand-Drouhin, O., Lejeune, M., Clin, M., and Henocque, J., Correlation between the Microstructure and Optical Properties of Carbon Nitride Films Deposited by RF Magnetron Sputtering, Mater. Sci. Semicond. Process., 2001, vol. 4, nos. 1–3, pp. 335–338.

    Article  CAS  Google Scholar 

  63. Kurt, R., Sanjines, R., Karimi, A., and Levy, F., Structural and Mechanical Properties of CNx Thin Films Prepared by Magnetron Sputtering, Diamond Relat. Mater., 2000, vol. 9, nos. 3–6, pp. 566–572.

    Article  CAS  Google Scholar 

  64. Tuinstra, F. and Koening, J.L., Raman Spectrum of Graphite, J. Chem. Phys., 1970, vol. 53, no. 3, p. 1126–1130.

    Article  CAS  Google Scholar 

  65. Ferrari, A.C. and Robertson, J., Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B: Condens. Matter, 2000, vol. 61, no. 20, pp. 14095–14107.

    Article  CAS  Google Scholar 

  66. Tauc, J., Grigorovici, R., and Vancu, A., Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi, 1966, vol. 15, no. 2, pp. 627–637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Fainer.

Additional information

Original Russian Text © N.I. Fainer, A.N. Golubenko, Yu.M. Rumyantsev, V.G. Kesler, B.M. Ayupov, V.I. Rakhlin, M.G. Voronkov, 2012, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fainer, N.I., Golubenko, A.N., Rumyantsev, Y.M. et al. Tris(diethylamino)silane—A new precursor compound for obtaining layers of silicon carbonitride. Glass Phys Chem 38, 15–26 (2012). https://doi.org/10.1134/S1087659612010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612010051

Keywords

Navigation