Skip to main content
Log in

Relaxation processes in inorganic melts and glasses: An elastic continuum model as a promising basis for the description of the viscosity and electrical conductivity

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

An Errata to this article was published on 01 October 2010

Abstract

A brief review is presented of the concepts regarding the nature of α and β relaxation processes in melts and glasses. Experimental data have been used to show that different types of relaxation in oxide systems can be interrelated to each other. The molecular mechanism of viscous flow in inorganic systems has been discussed in detail with the use of continuum theories (elasticity and hydrodynamics) developed in the works by the author in 1967–2007. A rigorous relationship between the volumes of atoms overcoming the activation barrier, the instantaneous shear modulus, and the barrier itself (free activation energy) has been derived. This relationship allows one to calculate the sizes of atoms involved in the viscous flow with a deviation that does not exceed 10% of the values determined by direct structural methods. In this case, empirically chosen constants are absent. Based on the results obtained by Anderson and Stewart (1954) and the author (1974), it has been established that the activation energy for ionic conduction can be calculated using similar notions. It has been demonstrated for the first time that the universal relation between the viscosity and conductivity over a wide range of temperatures (for alkali-containing oxide melts) i.e., the Littleton equation, finds a simple quantitative explanation in the framework of the same models, even though the mechanisms of both processes do not depend on each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC Press, 1995.

    Google Scholar 

  2. Johari, G.P. and Goldstein, M., Viscous Liquids and the Glass Transition: II. Secondary Relaxations in Glasses of Rigid Molecules, J. Chem. Phys., 1970, vol. 53, no. 6, pp. 2372–2388.

    Article  ADS  CAS  Google Scholar 

  3. Johari, G.P., Localized Molecular Motions of Beta-Relaxation and Its Energy Landscape, J. Non-Cryst. Solids, 2002, vols. 307–310, pp. 317–325.

    Article  Google Scholar 

  4. Nemilov, S.V., Ageing Kinetics and Internal Friction of Oxide Glasses, Glass Sci. Technol., 2005, vol. 78, no. 6, pp. 269–278.

    CAS  Google Scholar 

  5. Nemilov, S.V., Structural Relaxation in Oxide Glasses at Room Temperature, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2007, vol. 48, no. 4, pp. 291–295.

    CAS  Google Scholar 

  6. Nemilov, S.V., Interrelation between the Velocity of Sound, Mass, and Energy of Chemical Interaction, Dokl. Akad. Nauk SSSR, 1968, vol. 181, no. 6, pp. 1427–1429.

    CAS  Google Scholar 

  7. Nemilov, S.V., Interrelation between Shear Modulus and the Molecular Parameters of Viscous Flow for Glass Forming Liquids, J. Non-Cryst. Solids, 2006, vol. 352, nos. 26–27, pp. 2715–2725.

    Article  ADS  CAS  Google Scholar 

  8. Zdaniewsky, W.A., Rindone, G.E., and Day, D.E., The Internal Friction of Glasses, J. Mater. Sci., 1979, vol. 14, pp. 763–775.

    Google Scholar 

  9. Shelby, J.E. and Day, D.E., Mechanical Relaxation in Mixed-Alkali Silicate Glasses: Results, J. Am. Ceram. Soc., 1969, vol. 52, no. 4, pp. 169–177.

    Article  CAS  Google Scholar 

  10. Nemilov, S.V., Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate, Fiz. Khim. Stekla, 2000, vol. 26, no. 6, pp. 737–767 [Glass Phys. Chem. (Engl. transl.), 2000, vol. 26, no. 6, pp. 511–530].

    Google Scholar 

  11. Nemilov, S.V., Physical Ageing of Silicate Glasses, Glass Sci. Technol., 2003, vol. 76, no. 1, pp. 33–42.

    CAS  Google Scholar 

  12. Zanotto, E.D., Do Cathedral Glasses Flow? Am. J. Phys. 1998, vol. 66, no. 5, pp. 392–395.

    Article  ADS  CAS  Google Scholar 

  13. Nemilov, S.V. and Johari, G.P., A Mechanism for Spontaneous Relaxation of Glass at Room Temperature, Philos. Mag., 2003, vol. 83, no. 27, pp. 3117–3132. Nemilov, S.V. and Johari, G.P., Errata, Philos. Mag., 2004, vol. 84, no. 8, pp. 845.

    Article  ADS  CAS  Google Scholar 

  14. Leheny, R.L. and Nagel, S.R., Frequency-Domain Study of Physical Aging in a Simple Liquid, Phys. Rev. B: Condens. Matter, 1998, vol. 57, no. 9, pp. 5154–5162.

    ADS  CAS  Google Scholar 

  15. Stillinger, F.H., Relaxation Behavior in Atomic and Molecular Glasses, Phys. Rev. B: Condens. Matter, 1990, vol. 41, no. 4, pp. 2409–2416.

    ADS  Google Scholar 

  16. Volchek, A.O., Gusarov, A.I., and Dotsenko, A.V., Mechanisms of Nonexponential Relaxation in the Glass Transition Region, Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 417–425 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 4, pp. 301–306].

    Google Scholar 

  17. Florinskaya, V.A., Variation in the Refractive Index and Dispersion of Optical Glass during Heat Treatment, Tr. Gos. Opt. Inst., 1950, vol. 19, no. 131, pp. 3–108.

    Google Scholar 

  18. Mandel’shtam, L.I. and Leontovich, M.A., Theory of Sound Absorption in Liquids, Zh. Eksp. Teor. Fiz., 1937, vol. 7, no. 3, pp. 438–449.

    Google Scholar 

  19. Mazurin, O.V., Steklovanie (Glass Transition), Leningrad: Nauka, 1986 [in Russian].

    Google Scholar 

  20. Maxwell, J.C., On the Dynamical Theory of Gases, Philos. Trans. R. Soc. London, 1867, vol. 157, pp. 49–88.

    Article  Google Scholar 

  21. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, New York: Wiley, 1954. Translated under the title Molekulyarnaya teoriya gazov i zhidkostei, Moscow: Inostrannaya Literatura, 1961.

    MATH  Google Scholar 

  22. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941. Translated under the title Teoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  23. Goldstein, M., Liquids and the Glass Transition: A Potential Barrier Picture, J. Chem. Phys., 1969, vol. 51, no. 9, pp. 3728–3739.

    Article  ADS  CAS  Google Scholar 

  24. Solov’ev, V.A., On the Shear and Bulk Viscosity of Associated Liquids, Vestn. Leningr. Univ., Ser. 4: Fiz., Khim., 1985, no. 4, pp. 10–12.

  25. Nemilov, S.V., The Kinetics of Elementary Processes in the Condensed State: IV. Activation Entropy of Corpuscular Transport Processes, Zh. Fiz. Khim., 1969, vol. 43, no. 6, pp. 1433–1439.

    CAS  Google Scholar 

  26. Dushman, S., Theory of Unimolecular Reaction Velocities, J. Franklin Inst., 1920, vol. 189, no. 4, pp. 515–518.

    Article  Google Scholar 

  27. Polanyi, M. and Wigner, E., Über die Interferenz von Eigenschwingungen als Ursache von Energieschwankungen und chemischer Umsetzungen, Z. Phys. Chem., Abt. A, 1928, vol. 139, pp. 439–452.

    CAS  Google Scholar 

  28. Hanggi, P., Talkner, P., and Borkovec, M., Reaction-Rate Theory: Fifty Years after Kramers, Rev. Mod. Phys., 1990, vol. 62, no. 2, pp. 251–341.

    Article  MathSciNet  ADS  Google Scholar 

  29. Nemilov, S.V., Romanova, N.V., and Krylova, L.A., The Kinetics of Elementary Processes in the Condensed State: V. Volume of Units Activated in Viscous Flow of Silicate Glasses, Zh. Fiz. Khim., 1969, vol. 43, no. 8, pp. 2131–2134.

    CAS  Google Scholar 

  30. Nemilov, S.V., Structural Aspect of Possible Interrelation between Fragility (Length) of Glass Forming Melts and Poisson Ratio of Glasses, J. Non-Cryst. Solids, 2007, vol. 353, nos. 52–54, pp. 4613–4632.

    Article  ADS  CAS  Google Scholar 

  31. Myuller, R.L., The Valence Theory of Viscosity and Fluidity in the Critical Temperature Range for Refractory Glass-Forming Materials, Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 10, pp. 1077–1087.

    CAS  Google Scholar 

  32. Nemilov, S.V., The Relation between the Free Energy of Activation for Viscous Flow and the Energy of the Chemical Bonds in Glasses, Fiz. Tverd. Tela (Leningrad), 1964, vol. 6, no. 5, pp. 1375–1379 [Sov. Phys. Solid State (Engl. transl.), 1964, vol. 6, no. 5, pp. 1075–1078].

    CAS  Google Scholar 

  33. Nemilov, S.V., Opticheskoe materialovedenie: Fizicheskaya khimiya stekla (Optical Materials Science: Physical Chemistry of Glass), St. Petersburg: St. Petersburg State University of Information Technologies, Mechanics and Optics, 2009 [in Russian].

    Google Scholar 

  34. Denisov, G., Bureiko, S., Golubev, N., and Tokhadze, K., The Kinetics of Exchange and Proton Transfer Processes in Hydrogen-Bonded Systems, in Molecular Interactions, Ratajczak, H. and Orville-Thomas, W.J., Eds., Chichester: Wiley, 1981, vol. 2. Translated under the title Molekulyarnye vzaimodeistviya, Moscow, Mir,1984.

    Google Scholar 

  35. Tobolsky, A., Powell, R.E., and Eyring, H., Elastic-Viscous Properties of Matter, in Frontiers in Chemistry, vol. 1: The Chemistry of Large Molecules, Burk, R.E. and Grummit, O., Eds., New York: Interscience, 1943, pp. 125–184.

    Google Scholar 

  36. Mooney, M., A Theory of the Viscosity of a Maxwellian Elastic Liquid, Trans. Soc. Rheol., 1957, vol. 1, no. 1, pp. 63–94.

    Article  Google Scholar 

  37. Dyre, J.C., Olsen, N.B., and Christensen, T., Local Elastic Expansion Model for Viscous-Flow Activation Energies of Glass-Forming Molecular Liquids, Phys. Rev. B: Condens. Matter, 1996, vol. 53, no. 3, pp. 2171–2174.

    ADS  CAS  Google Scholar 

  38. Dyre, J.C., The Glass Transition and Elastic Models of Glass-Forming Liquids, Rev. Mod. Phys., 2006, vol. 78, no. 3, pp. 953–972.

    Article  ADS  CAS  Google Scholar 

  39. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge: Cambridge University Press, 1927.

    MATH  Google Scholar 

  40. Einstein, A., Eine neue Bestimmung der Molekülardimensionen, Ann. Phys. (Weinheim), 1906, vol. 19, no. 3, pp. 289–306.

    MathSciNet  ADS  CAS  Google Scholar 

  41. Goodier, J.N., Slow Viscous Flow and Elastic Deformation, Philos. Mag., 1936, vol. 72, no. 6, pp. 678–680.

    Google Scholar 

  42. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika, vol. 6: Gidrodinamika, Moscow: Nauka, 1986. Translated under the title Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Butterworth-Heinemann,1987.

    Google Scholar 

  43. Boon, J.P. and Yip, S., Molecular Hydrodynamics, New York: McGraw-Hill, 1980.

    Google Scholar 

  44. Johnson, P.A.V., Wright, A.C., and Sinclair, R.N., A Neutron Diffraction Investigation of the Structure of Vitreous Boron Trioxide, J. Non-Cryst. Solids, 1982, vol. 50, no. 3, pp. 281–311.

    Article  ADS  CAS  Google Scholar 

  45. Wagner, C. and Schottky, W., Theorie der geordneten Mischphasen, Z. Phys. Chem., Abt. B, 1930, vol. 11, pp. 163–210.

    CAS  Google Scholar 

  46. Jost, W., Diffusion in Solids, Liquid, Gases, New York: Academic, 1952.

    Google Scholar 

  47. Frenkel, J., Über die Wärmebewegungen in festen und flüssigen Körpern, Z. Phys., 1926, vol. 35, nos. 8–9, pp. 652–669.

    ADS  CAS  Google Scholar 

  48. Myuller, R.L., Elektroprovodnost’ stekloobraznykh veshchestv, Leningrad: Leningrad State University, 1968. Translated under the title Electrical Conductivity of Vitreous Substances, New York: Consultants Bureau,1971.

    Google Scholar 

  49. Stevels, J.M., The Electrical Properties of Glasses, in Handbuch Der Physik, von Flügge, S. Ed., Berlin: Springer, 1957, vol. 20.

    Google Scholar 

  50. Mazurin, O.V., Elektricheskie svoistva stekla, Leningrad: Leningrad State Institute of Technology, 1962. Mazurin, O.V., Glass in a Direct Electric Field, in The Structure of Glass, vol. 4: Electrical Properties and Structure of Glass, Mazurin, O.V., Ed., New York: Consultant Bureau, 1965, pp. 5–55.

    Google Scholar 

  51. Nemilov, S.V., The Kinetics of Elementary Processes in the Condensed State: I. Interrelation between Electrical Conductivity Models and the Dushman Kinetic Equation, Zh. Fiz. Khim., 1967, vol. 41, no. 8, pp. 1934–1941.

    CAS  Google Scholar 

  52. Nemilov, S.V., On the Interrelation of Equations of Statistical and Quantum Models of Conductivity in Solids, in Stekloobraznoe sostoyanie. Elektricheskie svoistva stekla. Trudy I Vsesoyuznogo simpoziuma (The Vitreous State: Electrical Properties of Glass (Proceedings of the I All-Union Symposium, Yerevan, 1969)), Yerevan: Academy of Science of the Armenian SSR, 1969, vol. 5, issue 1, pp. 61–68 [in Russian].

    Google Scholar 

  53. Nemilov, S.V., Activation Entropy and Nature of Ionic and Atomic Displacements in Glasses, Tr. Gos. Opt. Inst., 1972, vol. 39, no. 170, pp. 107–124.

    CAS  Google Scholar 

  54. Nemilov, S.V., Some Physicochemical Problems of the Study of Crystalline and Vitreous Materials, Doctoral (Chem.) Dissertation, Leningrad: Vavilov State Optical Institute, 1969 [in Russian].

    Google Scholar 

  55. Saringyulyan, R.S., Kostanyan, K.A., and Erznkyan, E.A., Viscosity and Electrical Conductivity of Molten Glasses over a Wide Temperature Range, in Stekloobraznoe sostoyanie. Trudy II Vsesoyuznogo simpoziuma po elektricheskim svoistvam i stroeniyu stekla. (The Vitreous State: Proceedings of the II All-Union Symposium on the Electrical Properties and Structure of Glass, Yerevan, 1972), Yerevan: Academy of Science of the Armenian SSR, 1970 vol. 5, issue 1, pp. 209–213 [in Russian].

    Google Scholar 

  56. Anderson, O.L. and Stewart, D.A., Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods, J. Am. Ceram. Soc., 1954, vol. 37, no. 12, pp. 573–580.

    Article  CAS  Google Scholar 

  57. Hakim, R.M. and Uhlmann, D.R., Electrical Conductivity of Alkali Silicate Glasses, Phys. Chem. Glasses, 1971, vol. 12, no. 5, pp. 132–138.

    CAS  Google Scholar 

  58. Martin, S.W. and Angell, C.A., Dc and Ac Conductivity in Wide Composition Range Li2O-P2O5 Glasses, J. Non-Cryst. Solids, 1986, vol. 83, nos. 1–2, pp. 185–207.

    Article  ADS  CAS  Google Scholar 

  59. Nemilov, S.V., Interrelation between the Activation Energy for Conduction, Shear Modulus, and Volume of Moving Ions in Glasses, in Stekloobraznoe sostoyanie. Elektricheskie svoistva i stroenie stekla. Trudy III Vsesoyuznogo simpoziuma (The Vitreous State: Electrical Properties and Structure of Glass (Proceedings of the III All-Union Symposium, Yerevan, 1972)), Yerevan: Academy of Science of the Armenian SSR, 1974, pp. 14–23 [in Russian].

    Google Scholar 

  60. Nemilov, S.V., The Kinetics of Elementary Processes in the Condensed State: VIII. Ionic Conductivity of Glass as a Process Occurring in Elastic Media, Zh. Fiz. Khim., 1973, vol. 47, no. 6, pp. 1479–1485.

    CAS  Google Scholar 

  61. Born, M., Atomtheorie des Festen Zustandes (Dynamik der Kristallgitter), in Fortschritte der mathematischen Wissenschaften in Monographien, von Blumenthal, O., Ed., Leipzig: Teubner, 1923, issue 4, pp. 527–789.

    Google Scholar 

  62. Maxwell, J.C., Electricity and Magnetism, Oxford: 1892, vol. 1.

  63. Moynihan, C.T., Balitactac, N., Boone, L., and Litovitz, T.A., Comparison of Shear and Conductivity Relaxation Times for Concentrated Lithium Chloride Solutions, J. Chem. Phys., 1971, vol. 55, no. 6, pp. 3013–3019.

    Article  ADS  CAS  Google Scholar 

  64. Ngai, K.L., A Review of Critical Experimental Facts in Electrical Relaxation and Ionic Diffusion in Ionically Conducting Glasses and Melts, J. Non-Cryst. Solids, 1996, vol. 203, pp. 232–245.

    Article  ADS  CAS  Google Scholar 

  65. Angell, C.A., Recent Developments in Fast Ion Transport in Glassy and Amorphous Materials, Solid State Commun., 1986, vols. 18–19, pp. 72–88.

    Google Scholar 

  66. Angell, C.A., Mobile Ions in Amorphous Solids, Annu. Rev. Phys. Chem., 1992, vol. 43, pp. 693–718.

    Article  ADS  CAS  Google Scholar 

  67. Angell, C.A., Dynamic Processes in Ionic Glasses, Chem. Rev., 1990, vol. 90, no. 3, pp. 523–542.

    Article  CAS  Google Scholar 

  68. Walden, P., Innere Reibung und deren Zusammenhang mit dem Leitvermögen, Z. Phys. Chem., 1906, vol. 55, no. 2, pp. 207–249.

    CAS  Google Scholar 

  69. Littleton, J.T., Critical Temperatures in Silicate Glasses, Ind. Eng. Chem., 1933, vol. 25, no. 7, pp. 748–755.

    Article  CAS  Google Scholar 

  70. Evstrop’ev, K.S., On the Electrical Conductivity in Molten Glasses in the Temperature Range 600–1400°C, Zh. Fiz. Khim., 1935, vol. 6, no. 4, pp. 454–468.

    Google Scholar 

  71. Kheinman, A.S. and Rybakova, L.I., Molecular State and Electrical Conductivity of Silicate Melts, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1949, no. 11, pp. 1685–1700.

  72. Frenkel, J., Sobranie izbrannykh trudov. T. III. Kineticheskaya teoriya zhidkostei (Collection of Selected Works, vol. 3: Kinetic Theory of Liquids), Moscow: Academy of Sciences of the USSR, 1959 [in Russian].

    Google Scholar 

  73. Mazurin, O.V., On the Similarity between the Temperature Dependences of the Electrical Conductivity and Viscosity of Glasses, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1958, no. 3, pp. 136–141.

  74. Myuller, R.L., On the Problem of the Interrelation between the Electrical Conductivity and Viscosity of Glasses, Fiz. Tverd. Tela (Leningrad), 1959, vol. 1, no. 2, pp. 346–347 [Sov. Phys. Solid State (Engl. transl.), 1959, vol. 1, no. 2, pp. 309–310].

    Google Scholar 

  75. Nemilov, S.V. and Saringyulyan, R.S., On the Change in the Viscosity of Glasses below the Glass Transition Temperature, Izv. Akad. Nauk SSSR, Neorg. Mater., 1972, vol. 8, no. 11, 2005–2010.

    CAS  Google Scholar 

  76. Nemilov, S.V., On the Interrelation between the Electrical Conductivity and Viscosity of Glasses over a Wide Temperature Range, in Stekloobraznoe sostoyanie. Elektricheskie svoistva i stroenie stekla. Trudy III Vsesoyuznogo simpoziuma (The Vitreous State: Electrical Properties and Structure of Glass (Proceedings of the III All-Union Symposium, Yerevan, 1972)), Yerevan: Academy of Science of the Armenian SSR, 1974, pp. 57–60 [in Russian].

    Google Scholar 

  77. Nemilov, S.V., The Kinetics of Elementary Processes in the Condensed State: VII. Activation Volume of Corpuscular Transfer Processes and Its Temperature Dependence (Viscous Flow of Glasses), Zh. Fiz. Khim., 1971, vol. 45, no. 11, pp. 2755–2760.

    Google Scholar 

  78. MDL®ciGlass: Information System, Version 7.0, Shrewsbury, MA, United States: Institute of Theoretical Chemistry, 2005.

  79. Lorey, G., Study of the Viscous-Elastic Properties of Soda-Silica Glasses in the Transformation Range, New Jersey, United States: Rutgers—The State University of New Jersey, 1966.

    Google Scholar 

  80. Arndt, K. and Geßler, A., Leitfahigkeitmessungen an geschmolzenen Salzen, Z. Elektrochem. 1908, vol. 14, no. 39, pp. 662–665.

    Article  CAS  Google Scholar 

  81. Remy, H., Lehrbuch der anorganischen Chemie, Leipzig: Geest and Portig, 1960, vol. 1, chap. 14.

    Google Scholar 

  82. Osipov, A.A. and Osipova, L.M., Structure of Glasses and Melts in the Na2O-B2O3 System from High-Temperature Raman Spectroscopic Data: I. Influence of Temperature on the Local Structure of Glasses and Melts, Fiz. Khim. Stekla, 2009, vol. 35, no. 2, pp. 153–166 [Glass Phys. Chem. (Engl. transl.), 2009, vol. 35, no. 2, pp. 121–131].

    Google Scholar 

  83. Sokolov, I.A., Murin, I.V., Naraev, V.N., and Pronkin, A.A., On the Nature of Current Carriers in Alkali-Free Glasses Based on Silicon, Boron, and Phosphorus Oxides, Fiz. Khim. Stekla, 1999, vol. 25, no. 5, pp. 593–612 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 5, pp. 454–468].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nemilov.

Additional information

Original Russian Text © S.V. Nemilov, 2010, published in Fizika i Khimiya Stekla.

An erratum to this article can be found at http://dx.doi.org/10.1134/S1087659610050147

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemilov, S.V. Relaxation processes in inorganic melts and glasses: An elastic continuum model as a promising basis for the description of the viscosity and electrical conductivity. Glass Phys Chem 36, 253–285 (2010). https://doi.org/10.1134/S1087659610030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659610030028

Key words

Navigation