Skip to main content
Log in

Ore geochemistry, zircon mineralogy, and genesis of the Sakharjok Y-Zr deposit, Kola Peninsula, Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla, H.M., Helba, H., and Matsueda, H., Chemistry of Zircon in Rare Metal Granitoids and Associated Rocks, Eastern Desert, Egypt, Res. Geol., 2009, vol. 59, no. 1, pp. 51–68.

    Article  Google Scholar 

  • Batieva, I.D. and Bel’kov, I.V., Sakhariokskii shchelochnoi massiv, slagayushchie ego porody i mineraly (The Sakharjok Alkaline Massif: Rocks and Minerals), Apatity, 1984.

  • Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes), St. Petersburg: Nauka, 2004.

    Google Scholar 

  • Bibikova, E.V., U-Pb geokhronologiya rannikh etapov evolyutsii drevnikh shchitov (U-Pb Geochronology of the Early Stages in Evolution of the Ancient Shields), Moscow: Nauka, 1989.

    Google Scholar 

  • Blichert-Toft, J., Arndt, N.T., and Ludden, J.N., Precambrian Alkaline Magmatism, Lithos, 1996, vol. 37, pp. 97–111.

    Article  Google Scholar 

  • Blichert-Toft, J., Rosing, M.T., Lesher, C.E., and Chauvel, C., Geochemical Constraints on the Origin of the Late Archean Skjoldungen Alkaline Igneous Province, SE Greenland, J. Petrol., 1995, vol. 36, pp. 515–561.

    Google Scholar 

  • Bykhovsky, L.Z. and Zubkov, L.B., Problems in Development of Mineral Resources of Zirconium, in, Mineral’nye Resursy Rossii, (Mineral Resources of Russia), 1996, no. 1, pp. 14–18.

  • Bykhovsky, L., Zubkov, L.B., and Osokin, E.D., Zirconium of Russia: Status and Outlook for Development of Mineral Resources, in Mineral’noe syr’e. Ser. geol.-ekonomich. (Mineral Commodities, Ser. Econ. Geol.), Moscow: VIMS, 1998, no. 2.

    Google Scholar 

  • Bykhovsky, L.Z., Zubkov, L.B., and Patyk-Kara, N.G., Outlook for Economic Development of Ti-Zr Placers of the Russian Platform, Rudy Met., 1996, no. 2, pp. 28–38.

  • Bykhovsky, L.Z., Zubkov, L.B., and Samarova, G.S., Mineral Resources of Zirconium: Perspective of Development, in Dokl. mezhdunar. simp., 5–9 oktyabrya 1998 g. (Proceeding of Intern. Symposium, October 5–9, 1998), Moscow: Mineral’noe syr’e, 2000, vol. 1, issue 6, pp. 55–60.

    Google Scholar 

  • Chernyshov, N.M. and Plaksenko, A.N., Accessory Minerals of the Differentiated Gabbronorite-Ultramafic Ni-Bearing Intrusions of the Voronezh Crystalline Massif, in Aktsessornye mineraly magmaticheskikh i metamorficheskikh porod (Accessory Minerals of Igneous and Metamorphic Rocks), Moscow: Nauka, 1982, pp. 96–111.

    Google Scholar 

  • Eby, G.N., The A-Type Granitoids: a Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis, Lithos, 1990, vol. 26, pp. 115–134.

    Article  Google Scholar 

  • Eliseev, N.A., Kushev, V.G., and Vinogradov, D.P., Proterozoiskii intruzivnyi kompleks Vostochnogo Priazov’ya (Proterozoic Intrusive Complex of the Eastern Azov Region), Moscow: Nauka, 1965.

    Google Scholar 

  • Fetter, A.H. and Goldberg, S.A., Age and Geochemical Characteristics of Bimodal Magmatism in the Neoproterozoic Grandfather Mountain Rift Basin, J. Geol., 1995, vol. 103, pp. 313–326.

    Article  Google Scholar 

  • Hacker, B.R., Ratschbacher, L., Webb, L., et al., U/Pb Zircon Ages Constrain the Architecture of Ultrahigh-Pressure Qinling-Dabie Orogen, China, Earth Planet. Sci. Lett., 1998, vol. 161, pp. 215–230.

    Article  Google Scholar 

  • Hoskin, P.W.O., Kinny, P.D., and Wyborn, D., Chemistry of Hydrothermal Zircon: Investigating, Timing and Nature of Water-Rock Interaction, in Water-Rock Interaction, Rotterdam: Balkema, 1998, pp. 545–548.

    Google Scholar 

  • Kerr, A., Dunning, G.R., and Tucker, R.D., The Youngest Paleozoic Plutonism of the Newfoundland Appalachians: U-Pb Ages from St. Lawrence and Francois Granites, Can. J. Earth Sci., 1993, vol. 30, pp. 2328–2333.

    Article  Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Sal’nikova, E.B., et al., The Khaldzan-Buregtei Massif of Peralkaline Rare-Metal Igneous Rocks: Structure, Geochronology, and Geodynamic Setting in the Caledonides of Western Mongolia, Petrology, 2004, vol. 12, no. 5, pp. 412–436.

    Google Scholar 

  • Krasnova, N.I. and Petrov, T.G., Genezis mineral’nykh individov i agregatov (Genesis of Mineral Individuals and Aggregates), St. Petersburg: Nevskii kur’er, 1997.

    Google Scholar 

  • Kuz’menko, M.V., Geokhimiya tantala i genezis endogennykh tantalovykh mestorozhdenii (Geochemistry of Tantalum and Genesis of Endogenic Tantaluim Deposits), Moscow: Nauka, 1978.

    Google Scholar 

  • Mineraly. Spravochnik (Minerals. Handbook), Moscow: Nauka, 1972, vol. III.

  • Mitrofanov, F.P., Zozulya, D.R., Bayanova, T.B., and Levkovich, N.V., The World’s Oldest Anorogenic Alkali Granitic Magmatism in the Keivy Structure on the Baltic Shield, Dokl. Earth Sci., 2000, vol. 374, no. 7, pp. 1145–1148.

    Google Scholar 

  • Nakamura, N., Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 757–775.

    Article  Google Scholar 

  • Patyk-Kara, N.G., Benevol’sky, B.I., Bykhovsky, L.Z., et al., Rossypnye mestorozhdeniya Rossii i drugikh stran SNG (minerageniya, promyshlennye tipy, strategiya razvitiya mineral’no-syr’evoi bazy) (Placer Deposits of Russiaand Other CIS Countries: Minerageny, Economic Types, and Strategy in Development of Mineral Resources), Moscow: Nauchnyi mir, 1997.

    Google Scholar 

  • Pupin, J.P., Zircon and Granite Petrology, Contrib. Mineral. Petrol., 1980, vol. 73, no. 3, pp. 207–220.

    Article  Google Scholar 

  • Rubin, J.N., Henry, C.D., and Price, J.G., Hydrothermal Zircons and Zircon Overgrowths, Sierra Blanca Peaks, Texas, Am. Mineral., 1989, vol. 74, pp. 865–869.

    Google Scholar 

  • Rudenko, S.A., Mode and Mechanism of Zircon Crystal Formation in Mariupolite, Zap. Vsesoyuzn. Mineral. O-va, 1957, vol. 86, no. 4, pp. 454–458.

    Google Scholar 

  • Rudenko, S.A. and Geranicheva, G.K., Zircon Metacrysts in Mariupolite and Microcline-Nepheline Pegmatites of the Oktyabr’sky Alkaline Pluton, in Pegmatity (mineralogiya, genezis i promyshlennaya otsenka) (Pegmatites: Mineralogy, Genesis, and Economic Implications), Leningrad: LGI, 1972, pp. 265–271.

    Google Scholar 

  • Ryabchikov, I.D., Composition of the Earth’s Upper Mantle, Geochem. Int., 1997, vol. 35, no. 5, pp. 405–414.

    Google Scholar 

  • Skosyreva, M.V. and Solodov, N.A., Geokhimiya i minerageniya tsirkoniya i gafniya (Geochemistry and Minerageny of Zirconium and Hafnium), Moscow: VINITI, 1983.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes, in Magmatism in Ocean Basins, Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Tsarovsky, I.D., Character of Residual Crystallization of the Oktyabr’sky (Mariupol) Alkaline Massif, Dokl. Akad. Nauk SSSR, 1947, vol. 57, no. 5, pp. 489–491.

    Google Scholar 

  • Vinogradov, A.N., Batieva, I.D., Zozulya, D.R., et al., Complex REE-Zr Mineralization of the Sakharjok Alkaline Massif, in Dokl. mezhdunar. simp., 5–9 oktyabrya 1998 g. (Proceeding of Intern. Symposium, October 5–9, 1998), Moscow: Mineral’noe syr’e, 2000, vol. 2, issue 7, pp. 25–34.

    Google Scholar 

  • Voloshin, A.V. and Lyalina, L.M., Morphology and Anatomy of Zircon Crystals from Silexites and Pegmatites of the Archean Alkali Granites of Kola Peninsula, Zap. Vseross. Mineral. O-va, 2004, vol. 133, no. 2, pp. 89–99.

    Google Scholar 

  • Wayne, D.M. and Sinha, A.K., Stability of Zircon U-Pb Systematics in a Greenschist-Grade Mylonite: An Example from the Rockfish Valley Fault Zone, Central Virginia, USA, J. Geol., 1992, vol. 100, pp. 593–603.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Nikiforov, A.V., Sal’nikova, E.B., et al., Rare-Metal Granitoids of the Ulug-Tanzek Deposit (Eastern Tyva): Age and Tectonic Setting, Dokl. Earth Sci., 2010, vol. 430, no. 1, pp. 95–100.

    Article  Google Scholar 

  • Zircon. Reviews in Mineralogy and Geochemistry, Washington, DC, 2003.

  • Zozulya, D.R., Bayanova, T.B., and Eby, G.N., Geology and Age of the Late Archean Keivy Alkaline Province, Northeastern Baltic Shield, J. Geol., 2005, vol. 113, no. 5, pp. 601–608.

    Article  Google Scholar 

  • Zozulya, D.R., Bayanova, T.B., and Serov, P.A., Age and Isotopic Geochemical Characteristics of Archean Carbonatites and Alkaline Rocks of the Baltic Shield, Dokl. Earth Sci., 2007, vol. 415, no. 3, pp. 874–879.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Zozulya.

Additional information

Original Russian Text © D.R. Zozulya, L.M. Lyalina, N. Eby, Ye.E. Savchenko, 2012, published in Geologiya Rudnykh Mestorozhdenii, 2012, Vol. 54, No. 2, pp. 99–118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zozulya, D.R., Lyalina, L.M., Eby, N. et al. Ore geochemistry, zircon mineralogy, and genesis of the Sakharjok Y-Zr deposit, Kola Peninsula, Russia. Geol. Ore Deposits 54, 81–98 (2012). https://doi.org/10.1134/S1075701512020079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701512020079

Keywords

Navigation