Skip to main content
Log in

Study of acid-modified aluminum oxides produced by centrifugal thermal activation in dehydration of ethanol

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of using products formed in centrifugal thermal activation of hydrargillite to obtain alumina catalysts washed to remove admixtures of alkali metals was considered. A comparison of the physicochemical and catalytic properties of the samples demonstrated that washing with water is more favorable than that with nitric acid; the catalytic activity and acid-base properties of the catalyst surface are determined not only by the content of Na, but also by the whole set of catalyst preparation conditions. The most active of the samples obtained in the study has acidity close to that of industrial aluminum oxide produced by the reprecipitation method, but surpasses it in activity: at 370°C, the total yield of ethylene and diethyl ether reaches a value of 88.8 mol %, which is 4% higher than that for the reference sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yakovleva, I.S., Banzaraktsaeva, S.P., Ovchinnikova, E.V., et al., Catal. Ind., 2016, vol. 8, no. 2, pp. 152–167.

    Article  Google Scholar 

  2. Chumachenko, V.A. and Ovchinnikova, E.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 134–138.

    Article  Google Scholar 

  3. Phung, T.K. and Busca, G., Chem. Eng. J., 2015, vol. 272, pp. 92–101.

    Article  CAS  Google Scholar 

  4. Phung, T.K., Herrera, C., Larrubia M A., Garcia-Dieguez, M., et al., Appl. Catal. A, 2014, vol. 483, pp. 41–51.

    Article  CAS  Google Scholar 

  5. Phung, T.K., Lagazzo, A, Crespo, M.R., et al., J. Catal., 2014, vol. 311, pp. 102–113.

    Article  CAS  Google Scholar 

  6. Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439.

    Article  CAS  Google Scholar 

  7. Zotov, R.A., Molchanov, V.V., Volodin, A.M., and Bedilo, A.F., J. Catal., 2011, vol. 278, pp. 71–77.

    Article  CAS  Google Scholar 

  8. Kagyrmanova, A.P., Chumachenko, V.A., Korotkikh, V.N., et al., Chem. Eng. J., 2011, vol. 176–177, pp. 188–194.

    Article  Google Scholar 

  9. Phung, T.K. and Busca, G., Catal. Commun., 2015, vol. 68, pp. 110–115.

    Article  CAS  Google Scholar 

  10. Hu, J.Z., Xu, S., Kwak, J.H., et al., J. Catal., 2016, vol. 336, pp. 85–93.

    Article  CAS  Google Scholar 

  11. Lee, J., Jeon, H., Oh, D.G., et al., Appl. Catal. A, 2015, vol. 500, pp. 58–68.

    Article  CAS  Google Scholar 

  12. Garbarino, G., Travi, I., Pani, M., et al., Catal. Commun., 2015, vol. 70, pp. 77–81.

    Article  CAS  Google Scholar 

  13. Queiroz, A.U.B. and Collares-Queiroz, F.P., Polym. Rev., 2009, vol. 49(2), pp. 65–78.

    Article  CAS  Google Scholar 

  14. Ross, R.A. and Bennett, D.E.R., J. Catal., 1967, vol. 8, pp. 289–292.

    Article  CAS  Google Scholar 

  15. Narayanan, C.R., Srinivasan S., Datye, A.K., et al., J. Catal., 1992, vol. 138, pp. 659–674.

    Article  CAS  Google Scholar 

  16. Pinakov, V.I., Stoyanovsky, O.I., Tanashev, Yu.Yu., et al., Chem. Eng. J., 2005, vol. 107, pp. 157–161.

    Article  CAS  Google Scholar 

  17. Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., et al., Kataliz Prom–sti, 2016, vol. 16, no. 1, pp. 13–28.

    Article  Google Scholar 

  18. Isupova, L.A., Tanashev, Yu.Yu., Kharina, I.V., et al., Chem. Eng. J., 2005, vol. 107(1–3), pp. 163–169.

    Article  CAS  Google Scholar 

  19. RF Patent 2 438 775 (publ. 2012).

  20. Chesnokov, V.V., Paukshtis, E.A., Buyanov, R.A., et al., Kinet. Catal., 1987, vol. 28, no. 3, pp. 566–570.

    Google Scholar 

  21. Prokudina, N.A, Chesnokov, V.V., Paukshtis, E.A., and Buyanov, R.A., Kinet. Catal., 1992 vol. 30, no. 4, pp. 835–839.

    Google Scholar 

  22. Paukshtis, E.A., IK spektroskopiya v geterogennom kislotno–osnovnom katalize (IR Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

    Google Scholar 

  23. Soltanov, R.I., Paukshtis, E.A., and Yurchenko, E.N., Kinet. Catal., 1982, vol. 23, no. 1, pp. 135–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ovchinnikova.

Additional information

Original Russian Text © E.V. Ovchinnikova, L.A. Isupova, I.G. Danilova, V.V. Danilevich, B.A. Chumachenko, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 5, pp. 545-552.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G. et al. Study of acid-modified aluminum oxides produced by centrifugal thermal activation in dehydration of ethanol. Russ J Appl Chem 89, 683–689 (2016). https://doi.org/10.1134/S1070427216050013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216050013

Navigation