Skip to main content
Log in

Effect of kinetic features in synthesis of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate on their structure and properties

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of synthesis conditions on the structure and optical properties of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate was determined. Raising the concentration of the methacrylic monomer in the system leads to a longer hydrolytic polycondensation of titanium alkoxide and faster radical polymerization of the organic monomer. Copolymers containing poly(titanium oxide) with a nearly anatase structure were obtained in the conditions of a double-stage synthesis including successive stages of low-temperature hydrolytic polycondensation and polymerization. In the case of a single-stage synthesis at 70°C, which combines simultaneously occurring polycondensation and polymerization processes, the copolymer contains the anatase (75%) and rutile (25%) forms of poly(titanium oxide).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  2. Srisitthiratkul, Ch., Pongsorrarith V., and Intasanta, N., Appl. Surf. Sci., 2011, vol. 257, no. 21, pp. 8850–8856.

    Article  CAS  Google Scholar 

  3. Wang, X., Hou, X., Luan, W., et al., Appl. Surf. Sci., 2012, vol. 258, no. 20, pp. 8241–8246.

    Article  CAS  Google Scholar 

  4. Kubacka, A., Ferrer, M., Fernandez-Garcia, M., et al., Appl. Catal. B, 2011, vol. 104, nos. 3–4, pp. 346–352.

    Article  CAS  Google Scholar 

  5. Ravirajan, P., Bradley, D., Nelson, J., et al., Appl. Phys. Lett., 2005, vol. 86, no. 14, pp. 143101.

    Article  Google Scholar 

  6. Zeng, T.-W., Lo, H.-H., Chang, Ch.-H., et al., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, nos. 6–7, pp. 952–957.

    Article  CAS  Google Scholar 

  7. Huisman, C.L., Schoonman, J., and Goossens, A., Sol. Energy Mater. Sol. Cells, 2005, vol. 85, no. 115, pp. 115–124.

    CAS  Google Scholar 

  8. Museur, L., Gorbovyi, P., Traore, M., et al., J. Lumin., 2012, vol. 132, no. 5, pp. 1192–1199.

    Article  CAS  Google Scholar 

  9. Liang, Y., Dvornikov, A.S., and Rendzepis, P.M., Opt. Comm., 2003, vol. 223, nos. 1–3, pp. 61–66.

    Article  CAS  Google Scholar 

  10. Reyes-Esqueda, J.-A., Vebreb, L., Lecaque, R., et al., Opt. Comm., 2003, vol. 220, nos. 1–3, pp. 59–66.

    Article  CAS  Google Scholar 

  11. Sarantopoulos, Ch., Puzenat, E., Guillard, Ch., et al., Appl. Catal. B, 2009, vol. 91, nos. 1–2, pp. 225–233.

    Article  CAS  Google Scholar 

  12. Huang, X., Yuan, J., Shi, J., et al., J. Hazard. Mater., 2009, vol. 171, nos. 1–3, pp. 827–832.

    Article  CAS  Google Scholar 

  13. Ao, C.H., Lee, S.C., and Yu, J.C., J. Photochem. Photobiol., A, 2003, vol. 156, nos. 1–3, pp. 171–177.

    Article  CAS  Google Scholar 

  14. Nakata, K. and Fujishimaa, A., J. Photochem. Photobiol., C, 2012, vol. 13, no. 3, pp. 169–189.

    Article  CAS  Google Scholar 

  15. Sanchez, C., Soler-Illia, G.J., Ribot, F., et al., Chem. Mater., 2001, vol. 13, no. 10, pp. 3061–3083.

    Article  CAS  Google Scholar 

  16. Rozes, L. and Sanchez, C., Chem. Soc. Rev., 2011, vol. 40, no. 2, pp. 1006–1030.

    Article  CAS  Google Scholar 

  17. Kallala, M., Sanchez, C., and Cabane, B., Phys. Rev. E, 1993, vol. 48, no. 5, pp. 3692–3704.

    Article  CAS  Google Scholar 

  18. Bityurin, N., Znaidi, L., and Kanaev, A., Chem. Phys. Lett., 2003, vol. 374, nos. 1–2, pp. 95–99.

    Article  CAS  Google Scholar 

  19. Kuznetsov, A.I., Kameneva, O., Alexandrov, A., et al., Phys. Rev. E, 2005, vol. 71, no. 2, pp. 021403-1–021403-7.

    Article  Google Scholar 

  20. Bityurin, N., Kuznetsov, A.I., and Kanaev, A., Appl. Surf. Sci., 2005, vol. 248, nos. 1–4, pp. 86–90.

    Article  CAS  Google Scholar 

  21. Savenije, T.J., Vermeulen, M.J.W., Haas, M.P., et al., Sol. Energy Mater. Sol. Cells., 2000, vol. 61, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  22. Kameneva, O.V., Kuznetsov, A.I., Smirnova, L.A., et al., Doklady Akad. Nauk, 2006, vol. 407, no. 1, pp. 29–31.

    Google Scholar 

  23. Salomatina, E.V., Bityurin, N.M., Gulenova, M.V., et al., J. Mater. Chem. C, 2013, vol. 1, pp. 6375–6385.

    Article  CAS  Google Scholar 

  24. Kickelbick, G., Prog. Polym. Sci., 2003, vol. 28, pp. 83–114.

    Article  CAS  Google Scholar 

  25. Schubert, U., Chem. Soc. Rev., 2011, vol. 40, pp. 587–582.

    Article  Google Scholar 

  26. Mehrotra, R.C., Inorg. Chim. Acta. Rev., 1967, vol. 1, pp. 99–112.

    Article  CAS  Google Scholar 

  27. Golubko, N.V., Yanovskaya, M.I., and Romm, I.P., et al., J. Sol-Gel Sci. Tech., 2001, vol. 20, pp. 245–262.

    Article  CAS  Google Scholar 

  28. Pierre, A.S., Introduction to Sol-Gel Processing., Int. Ser. in Sol-Gel Processing: Technology and Applications, Dordrecht, 1998.

    Book  Google Scholar 

  29. Kostin, A.S. and Kol’tsova, E.M., Fundamental’n. Issled., 2012, no. 9-2, pp. 381–387.

    Google Scholar 

  30. Mehrotra, R.C., J. Non-Cryst. Solids, 1990, vol. 121, nos. 1–3, pp. 1–6.

    Article  CAS  Google Scholar 

  31. Barringer, E.A. and Bowen, H.K., Langmuir, 1985, vol. 1, no. 4, pp. 414–420.

    Article  CAS  Google Scholar 

  32. Damm, C., J. Photochem. Photobiol. A: Chem., 2006, vol. 181, nos. 2–3, pp. 297–305.

    Article  CAS  Google Scholar 

  33. Kabachii, Yu.A., Kochev, S.Yu., Blagodatskikh, I.V., et al., Polym. Sci., Ser. B., 2003, vol. 45, nos. 9–10, pp. 272–276.

    Google Scholar 

  34. Moskvichev, A.N. and Moskvichev, A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 3, pp. 69–71.

    CAS  Google Scholar 

  35. Afanas’ev, A.V., Moskvichev, A.N., Moskvichev, A.A., et al., Vestn. Nizhni Novgorod Gos. Univ., 2008, no. 3, pp. 60–64.

    Google Scholar 

  36. Moskvichev, A.N. and Moskvichev, A.A., Tr. Nizhegorod Gos. Tekh. Univ., Khim. Khim. Biotekhnol., 2007, vol. 80, no. 1, pp. 223–229.

    Google Scholar 

  37. Lushcheikin, G.A., Metody issledovaniya elektricheskikh svoistv polimerov (Methods for Study of Electrical Properties of Polymers), Moscow: Khimiya, 1988.

    Google Scholar 

  38. Chernov, I.A., Novikov, G.F., Dzhardimalieva, G.I., et al., Polym. Sci., Ser. A, 2007, vol. 49, no. 3, pp. 267–274.

    Article  Google Scholar 

  39. Novitskii, S.P., Kenzin, V.I., and Voloshin, A.A., Elektrokhimiya, 1993, vol. 29, no. 1, pp. 138–143.

    CAS  Google Scholar 

  40. Barsucov, Ye. and Macdonald, R., Characterization of Materials, Kaufmann, E.N., Ed., John Wiley & Sons, 2012.

  41. Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1983.

    Google Scholar 

  42. Rodin, D.L., Solopchenko, A.V., Kepman, A.V., et al., Butlerov. soobshch., 2013, vol. 35, no. 8, pp. 31–41.

    Google Scholar 

  43. Rozenberg, B.A., Boiko, G.N., Bogdanova, L.M., et al., Polym. Sci. Ser. A, 2003, vol. 45, no. 9, pp. 819–825.

    Google Scholar 

  44. Arulin, V.I. and Efimov, L.I., Trudy Khim. Khim. Tekhnol., 1970, no. 2, pp. 74–77.

    Google Scholar 

  45. Metody analiza akrilatov i metakrilatov (Methods for Analysis of Acrylates and Methacrylates), Moscow: Khimiya, 1972.

  46. Lipatov, Yu.S., Spravochnik po khimii polimerov (Handbook of Polymer Chemistry), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  47. Solov’eva, L.M., Elektrodnye protsessy v galogenidnykh i okisnykh elektrolitakh (Electrode Processes in Halide and Oxide Electrolytes), Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1981, pp. 68–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Smirnova.

Additional information

Original Russian Text © E.V. Salomatina, A.N. Moskvichev, A.V. Knyazev, L.A. Smirnova, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 2, pp. 190–201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomatina, E.V., Moskvichev, A.N., Knyazev, A.V. et al. Effect of kinetic features in synthesis of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate on their structure and properties. Russ J Appl Chem 88, 197–207 (2015). https://doi.org/10.1134/S1070427215020032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215020032

Keywords

Navigation