Skip to main content
Log in

The regioselective pyrolysis of (trithio)carbonate: A computational study

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The regioselective pyrolysis of sec-butyl methyl (trithio)carbonate was calculated at the MP2/6-31G(d) level in the Gaussian program. Twelve possible pathways were calculated. Nine of them gave the desired alkene products, 1-butene, E-butene, and Z-butene, and the other three, the rearrangement products, sec-butyl methyl ether and butanone for sec-butyl methyl carbonate and sec-butyl methyl thioether and butane-2-thione for sec-butyl methyl trithiocarbonate. It was shown that the two-step mechanism, including the carbonyl oxygen- or thion sulfur atom-involved six-membered ring transition state, as rate-determining step, is a preferred mechanism of the pyrolysis. The calculated product distribution is consistent with the experimental data on the pyrolysis of sec-butyl methyl carbonate. The product distribution for sec-butyl methyl trithiocarbonate was also predicted by the MP2/6-31G(d) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tschugaeff, L., Ber. Dtsch. Chem. Ges., 1899, vol. 32, p. 3332.

    Article  CAS  Google Scholar 

  2. Tschúgaeff, L., Ber. Dtsch. Chem. Ges., 1898, vol. 31, p. 1775.

    Article  Google Scholar 

  3. Huang, Y.-S. and Wang, G.-W., J. Mol. Struct.: THEOCHEM, 2008, vol. 860, p. 24.

    Article  CAS  Google Scholar 

  4. Wang, T., Schlueter, K.T., Riehl, B.L., Johnson, J.M., and Heineman, W.R., Anal. Chem., 2013, vol. 85, p. 9486.

    Article  CAS  Google Scholar 

  5. Smith, G.G. and Yates, B.L., J. Org. Chem., 1965, vol. 30, p. 434.

    Article  CAS  Google Scholar 

  6. Cram, D.J., J. Am. Chem. Soc., 1949, vol. 71, p. 3883.

    Article  CAS  Google Scholar 

  7. O’Connor, G.L. and Nace, H.R., J. Am. Chem. Soc., 1953, vol. 75, p. 2118.

    Article  Google Scholar 

  8. Tsou, K.-C. and Seligman, A.M., J. Am. Chem. Soc., 1954, vol. 76, p. 3704.

    Article  CAS  Google Scholar 

  9. Barton, D.H.R., J. Chem. Soc. (Resumed), 1949, p. 2174.

    Google Scholar 

  10. Alawadi, N. and Bigley, D.B., J. Chem. Soc., Perkin Trans. 2, 1982, p. 773.

    Google Scholar 

  11. Alawadi, N. and Bigley, D.B., J. Chem. Soc., Perkin Trans. 2, 1979, p. 497.

    Google Scholar 

  12. Hückel, W., Tappe, W., and Legutke, G., Liebigs Ann. Chem., 1940, vol. 543, p. 191.

    Article  Google Scholar 

  13. Cross, J.T.D., Hunter, R., and Stimson, V.R., Aust. J. Chem., 1976, vol. 29, p. 1477.

    Article  CAS  Google Scholar 

  14. Alawadi, N. and Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1986, vol., p. 1581.

    Google Scholar 

  15. Huang, Y., Shaw, M.A., Mullins, E.S., Kirley, T.L., and Ayres, N., Biomacromolecules, 2014, vol. 15, p. 4455.

    Article  CAS  Google Scholar 

  16. Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1983, p. 291.

    Google Scholar 

  17. Bader, R.F.W. and Bourns, A.N., Can. J. Chem., 1961, vol. 39, p. 348.

    Article  CAS  Google Scholar 

  18. Wang, T., Zhao, D., Guo, X., Correa, J., Riehl, B.L., and Heineman, W.R., Anal. Chem., 2014, vol. 86, p. 4354.

    Article  CAS  Google Scholar 

  19. Alexander, E.R. and Mudrak, A., J. Am. Chem. Soc., 1950, vol. 72, p. 1810.

    Article  CAS  Google Scholar 

  20. Alexander, E.R. and Mudrak, A., J. Am. Chem. Soc., 1951, vol. 73, p. 59.

    Article  CAS  Google Scholar 

  21. Lee, I., Cha, O.J., and Lee, B.S., Bull. Korean Chem. Soc., 1991, vol. 12, p. 97.

    CAS  Google Scholar 

  22. Erickson, J.A. and Kahn, S.D., J. Am. Chem. Soc., 1994, vol. 116, p. 6271.

    Article  CAS  Google Scholar 

  23. Velez, E., Quijano, J., Notario, R., Murillo, J., and Ramirez, J.F., J. Phys. Org. Chem., 2008, vol. 21, p. 797.

    Article  CAS  Google Scholar 

  24. Leon, L.A., Notario, R., Quijano, J., Velez, E., Saanchez, C., Quijano, J.C., and Al-Awadi, N., Theor. Chem. Acc., 2003, vol. 110, p. 387.

    Article  CAS  Google Scholar 

  25. Chen, X., Huang, Y., Yang, G., Li, J., Wang, T., Schulz, O.H., and Jennings, L.K., Curr. Pharm. Des., 2015, vol. 21, p. 4262.

    Article  CAS  Google Scholar 

  26. Velez, E., Quijano, J., Gaviria, J., Roux, M.V., Jimenez, P., Temprado, M., Martin-Valcarcel, G., Perez-Parajon, J., and Notario, R., J. Phys. Chem. A, 2005, vol. 109, p. 7832.

    Article  CAS  Google Scholar 

  27. Murillo, J., Henao, D., Velez, E., Castano, C., Quijano, J., Gaviria, J., and Zapata, E., Int. J. Chem. Kinet., 2012, vol. 44, p. 407.

    Article  CAS  Google Scholar 

  28. Velez, E., Quijano, J., Notario, R., Pabon, E., Murillo, J., Leal, J., Zapata, E., and Alarcon, G., J. Phys. Org. Chem., 2009, vol. 22, p. 971.

    Article  CAS  Google Scholar 

  29. Claes, L., François, J.P., and Deleuze, M., J. Comput. Chem., 2003, vol. 24, p. 2023.

    Article  CAS  Google Scholar 

  30. Wu, P., Truong, J., Huang, Y., and Li, J., J. Theor. Comput. Chem., 2013, vol. 12, p. 1350064.

    Article  Google Scholar 

  31. Wu, P., Chen, X., Li, J., and Huang, Y., Comput. Theor. Chem., 2014, vol. 1030, p. 67.

    Article  CAS  Google Scholar 

  32. Wu, P. and Li, J., J. Theor. Comput. Chem., 2014, vol. 13, p. 1450051.

    Article  Google Scholar 

  33. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.

    Google Scholar 

  34. DePuy, C.H., Bishop, C.A., and Goeders, C.N., J. Am. Chem. Soc., 1961, vol. 83, p. 2151.

    Article  CAS  Google Scholar 

  35. Scala, A.A., Colangelo, J.P., Hussey, G.E., and Stolle, W.T., J. Am. Chem. Soc., 1974, vol. 96, p. 4069.

    Article  CAS  Google Scholar 

  36. Bigley, D.B., Brown, C., and Weatherhead, R.H., J. Chem. Soc., Perkin Trans. 2, 1976, p. 701.

    Google Scholar 

  37. Scott, A.P. and Radom, L., J. Phys. Chem., 1996, vol. 100, p. 16502.

    Article  CAS  Google Scholar 

  38. Fukui, K., J. Phys. Chem., 1970, vol. 74, p. 4161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhu.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhou, X., Zhang, W. et al. The regioselective pyrolysis of (trithio)carbonate: A computational study. Russ J Gen Chem 85, 2399–2407 (2015). https://doi.org/10.1134/S107036321510028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321510028X

Keywords

Navigation