Skip to main content
Log in

The effect of ablation of the gene for H+-transporting NAD/NADP transhydrogenase on the life spans of nematodes and mammals

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Mitochondrial transhydrogenase catalyzes the reaction; H +out + NADP+ + NADH = NAD+ + NADPH + H +in . The maintenance of the NADPH pool increases the mitochondrial antioxidant potential. Therefore, according to the commonly adopted free radical theory of aging, ablation of the transhydrogenase gene should reduce the life span. However, contrary to this reasoning, the life span of Caenorhabditis elegans nematodes with null mutations in the gene does not differ from that in wild-type worms. This fact indicates that free radical damage of mitochondria is not associated with aging. Meta analysis of data on the life span in mice possessing a spontaneous mutation in the transhydrogenase gene shows that a lack of this enzyme does not accelerate aging in mammals either. The heart is the tissue with the highest transhydrogenase production rate, and it is likely that this enzyme contributes to the protection of cardiac myocytes from oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

LS:

life span

FRTA:

free-radical theory of aging

References

  1. Pedersen, A., Karlsson, G.B., and Rydström, J., J. Bioenerg. Biomembr., 2008, vol. 40, pp. 463–473.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson, J.B., FEBS Lett., 2003, vol. 555, pp. 176–177.

    Article  PubMed  CAS  Google Scholar 

  3. Holmberg, E., Olausson, T., Hultman, T., Rydström, J., Ahmad, S., Glavas, N.A., and Bragg, P.D., Biochemistry, 1994, vol. 33, pp. 7691–7700.

    Article  PubMed  CAS  Google Scholar 

  4. Bizouarn, T., Fjellström, O., Axelsson, M., Korneenko, T.V., Pestov, N.B., Ivanova, M.V., Egorov, M.V., Shakhparonov, M.I., and Rydström, J., Eur. J. Biochem., 2000, vol. 267, pp. 3281–3288.

    Article  PubMed  CAS  Google Scholar 

  5. Hoek, J.B. and Rydström, J., Biochem. J., 1988, vol. 254, pp. 1–10.

    PubMed  CAS  Google Scholar 

  6. Arkblad, E.L., Tuck, S., Pestov, N.B., Dmitriev, R.I., Kostina, M.B., Stenvall, J., Tranberg, M., and Rydström, J., Free Radic. Biol. Med., 2005, vol. 38, pp. 1518–1525.

    Article  PubMed  CAS  Google Scholar 

  7. Fujii, M., Tanaka, N., Miki, K., Hossain, M.N., Endoh, M., and Ayusawa, D., Biosci. Biotechnol. Biochem., 2005, vol. 69, pp. 2015–2018.

    Article  PubMed  CAS  Google Scholar 

  8. Freeman, H., Shimomura, K., Horner, E., Cox, R.D., and Ashcroft, F.M., Cell Metab., 2006, vol. 3, pp. 35–45.

    Article  PubMed  CAS  Google Scholar 

  9. Huang, T.T., Naeemuddin, M., Elchuri, S., Yamaguchi, M., Kozy, H.M., Carlson, E.J., and Epstein, C.J., Hum. Mol. Genet., 2006, vol. 15, pp. 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  10. Arkblad, E.L., Egorov, M., Shakhparonov, M., Romanova, L., Polzikov, M., and Rydström, J., Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2002, vol. 133, pp. 13–21.

    Article  PubMed  Google Scholar 

  11. Olgun, A., Biogerontology, 2008, Oct 19. DOI 10.1007/s10522-008-9190-2.

  12. de Magalhães, J.P., Cabral, J.A., and Magalhães, D., Genetics, 2005, vol. 169, pp. 265–274.

    Article  PubMed  Google Scholar 

  13. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., Scherer, B., and Sinclair, D.A., Nature, 2003, vol. 425, pp. 191–196.

    Article  PubMed  CAS  Google Scholar 

  14. Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D., and Partridge, L., Mech. Ageing Dev., 2007, vol. 128, pp. 546–552.

    Article  PubMed  CAS  Google Scholar 

  15. Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell, W.R., Kamara, D., Minor, R.K., Perez, E., Jamieson, H.A., Zhang, Y., Dunn, S.R., Sharma, K., Pleshko, N., Woollett, L.A., Csiszar, A., and Ikeno, Y., Le Couteur D., Elliott P.J., Becker K.G., Navas P., Ingram D.K., Wolf N.S., Ungvari Z., Sinclair D.A., and De Cabo R, Cell Metab., 2008, vol. 8, pp. 157–168.

    Article  PubMed  CAS  Google Scholar 

  16. Gruber, J., Schaffer, S., and Halliwell, B., Front. Biosci., 2008, vol. 13, pp. 6554–6579.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Pestov.

Additional information

Original Russian Text © N.B. Pestov, M.I. Shakhparonov, 2009, published in Bioorganicheskaya Khimiya, 2009, Vol. 35, No. 5, pp. 681–685.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestov, N.B., Shakhparonov, M.I. The effect of ablation of the gene for H+-transporting NAD/NADP transhydrogenase on the life spans of nematodes and mammals. Russ J Bioorg Chem 35, 614–618 (2009). https://doi.org/10.1134/S1068162009050124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162009050124

Key words

Navigation