Skip to main content
Log in

Adaptive responses of scots pine to the impact of adverse abiotic factors on the rhizosphere

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The impact of long-term seasonal soil freezing, drought, and waterlogging on the rhizosphere of young Scots pine trees (Pinus sylvestris L., age class 1) has been simulated in experiments. The results have shown that cold stress exposure leads to reduction of the rates of linear and radial tree growth and of chlorophyll content in needles, a shift in the peak of starch content, and initiation of free amino acid deposition in the aboveground plant parts. Drought activates utilization of carbohydrate reserves and amino acid accumulation in the root bast, whereas soil waterlogging stimulates deposition of carbohydrates but causes a decrease in the levels of chlorophyll and amino acids in all plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baquedano, F.J. and Castillo, F.J., Comparative Ecophysiological Effect of Drought on Seedlings of the Mediterranean Water-Saver Pinus halepensis and Water-Spenders Qercus coccifera and Qercus ilex, Trees, 2006, vol. 20, no. 6, pp. 689–700.

    Article  Google Scholar 

  • Domish, T., Finer, L., and Lehto, T., Effect of Soil Temperature on Biomass and Carbohydrate Allocation in Scots pine (Pinus sylvestris) Seedlings at the Beginning of the Growth Season, Tree Physiol., 2001, vol. 21, no. 7, pp. 465–472.

    Google Scholar 

  • Godnev, T.N., Khodasevich, E.V., and Arnautova, A.I., On the Pattern of Air Temperature-Dependent Seasonal Changes in Pigment Content and Ratio in Conifers under Natural Conditions, Fiziol. Rast., 1969, vol. 16, no. 1, pp. 102–105.

    CAS  Google Scholar 

  • Hoddinott J. and Scott, R., The Influence of Light Quality and Carbon Dioxide Enrichment on the Cold Hardiness of Three Conifer Species Seedlings, Biotronics, 1996, vol. 25, no. 1, pp. 33–44.

    Google Scholar 

  • Hulbert, C., Funkhouser, E.A., Soltes, E.J., and Newton, R.J., Inhibition of Protein Synthesis in Loblolly Pine Hypocotyls by Mannitol-Induced Water Stress, Tree Physiol., 1988, vol. 4, no. 1, pp. 19–26.

    CAS  PubMed  Google Scholar 

  • Humphreys, F.R. and Kelly, J., A method for Determination of Starch in Wood, Anal. Chem. Acta, 1961, vol. 24, no. 1, pp. 66–70.

    Article  CAS  Google Scholar 

  • Ladygin, V.G., Effect of Root Hypoxia and Iron Deficiency on Photosynthesis, Biochemical Composition, and Chloroplast Structure in Pea Leaves, Fiziol. Rast., 2004, vol. 51, no. 1, pp. 35–49.

    Google Scholar 

  • Li, T.H. and Li, S.H., Leaf Responses of Micropropagated Apple Plants to Water Stress: Nonstructural Carbohydrate Composition and Regulatory Role of Metabolic Enzymes, Tree Physiol., 2005, vol. 25, no. 4, pp. 495–504.

    CAS  PubMed  Google Scholar 

  • Lyr, H. and Garbe, V., Influence of Root Temperature on Growth of Pinus sylvestris, Fagus sylvatica, Tilia cordata, and Quercus robur, Trees, 1995, vol. 9, no. 4, pp. 220–223.

    Article  Google Scholar 

  • Mensah, J.K., Obadoni, B.O., Eruotor, P.G., and Onome-Ireguna, F., Simulated Flooding and Drought Effects on Germination, Growth, and Yield Parameters of Sesame (Sesamum indicum L.), Afr. J. Biotechnol., 2006, vol. 5, no. 13, pp. 1249–1253.

    CAS  Google Scholar 

  • Mustroph, A. and Albrecht, G., Tolerance of Crop Plants to Oxygen Deficiency Stress: Fermentative Activity and Photosynthetic Capacity of Entire Seedlings under Hypoxia and Anoxia, Physiol. Plant., 2003, vol. 117, no. 4, pp. 508–520.

    Article  CAS  PubMed  Google Scholar 

  • Naidu, B.P., Paleg, L.G., Aspinall, D., et al., Rate of Imposition of Water Stress Alters the Accumulation of Nitrogen-Containing Solutes by Wheat Seedlings, Aust. J. Plant Physiol., 1990, vol. 17, no. 6, pp. 653–664.

    Article  CAS  Google Scholar 

  • Parelle, J., Brendel, O., Bodenes, C., et al., Differences in Morphological and Physiological Responses to Waterlogging between Two Sympatric Oak Species (Quercus petraea [Matt.] Liebl., Quercus Robur L.), Ann. For. Sci., 2006, vol. 63, no. 8, pp. 849–859.

    Article  Google Scholar 

  • Pukacki, P.M. and Kamillska-Rozek, E., Effect of Drought Stress on Chlorophyll a Fluorescence and Electrical Admittance of Shoots in Norway Spruce Seedlings, Trees, 2005, vol. 19, no. 5, pp. 539–544.

    Article  CAS  Google Scholar 

  • Repo, T., Leinonen, I., Ryypp A., and Finer, L., The Effect of Soil Temperature on the Bud Phenology, Chlorophyll Fluorescence, Carbohydrate Content and Cold Hardiness of Norway Spruce Seedlings, Physiol. Plant., 2004, vol. 121, no. 1, pp. 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Shchetinina, V.A. and Butenko, L.A., Colorimetric Method of Total Nitrogen Determination in Plants and Soil, Pochvovedenie, 1957, no. 8, pp. 98–101.

  • Shlyk, A.A., Determination of Chlorophylls and Carotenoids in Green Leaf Extracts, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Moscow: Nauka, 1971, pp. 154–170.

    Google Scholar 

  • Shvaleva, A.L., Costa, E., Silva, F., et al., Metabolic Responses of Water Deficit in two Eucaliptus globules Clones with Contrasting Drought Sensitivity, Tree Physiol., 2005, vol. 26, no. 2, pp. 239–248.

    Article  Google Scholar 

  • Solfjeld, I. and Johnsen, O., The Influence of Root-Zone Temperature on Growth of Betula pendula Roth., Trees, 2006, vol. 20, no. 3, pp. 320–328.

    Article  Google Scholar 

  • Strand, M. and Oquist, G., Effect of Frost Hardening, Dehardening and Freezing Stress on in Vivo Chlorophyll Fluorescence of Seedlings of Scots Pine (Pinus sylvestris L.), Plant Cell Environ., 1988, vol. 11, no. 4, pp. 231–238.

    Article  CAS  Google Scholar 

  • Sudachkova, N.E., Shein, I.V., Romanova, L.I., et al., Biokhimicheskie indikatory stressovogo sostoyaniya drevesnykh rastenii (Biochemical Indicators of Stress in Woody Plants), Novosibirsk: Nauka, 1997.

    Google Scholar 

  • Sudachkova, N.E., Milyutina, I.L., and Semenova, G.P., Influence of Water Deficit on Contents of Carbohydrates and Nitrogenous Compounds in Pinus sylvestris L. and Larix sibirica Ledeb. Tissues, Eurasian J. For. Res., 2002, no. 4, pp. 1–11.

  • Sudachkova, N.E., Milyutina, I.L., and Romanova, L.I., Effect of Stress Exposure on Xylogenesis in Scots Pine under Conditions of Siberia, Lesovedenie, 2007, no. 6, pp. 101–106.

  • Tschaplinski, T.J., Norbi, R.J., and Wullschleger, S.D., Responses of Loblolly Pine Seedlings to Elevated CO2 and Fluctuation of Water Supply, Tree Physiol., 1993, vol. 13, no. 3, pp. 283–296.

    CAS  PubMed  Google Scholar 

  • Veretennikov, A.V., Fiziologicheskie osnovy ustoichivosti drevesnykh rastenii k vremennomu izbytku vlagi v pochve (Physiological Basis of Resistance to Temporary Excess of Soil Moisture in Woody Plants), Moscow: Nauka, 1968.

    Google Scholar 

  • Voznesenskii, V.L., Gorbacheva, G.I., Shtan’ko, T.P., and Filippova, L.A., The Determination of Sugars from Discoloration of Fehling’s Solution, Fiziol. Rast., 1962, vol. 9, no. 2, pp. 255–266.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Sudachkova.

Additional information

Original Russian Text © N.E. Sudachkova, I.L. Milyutina, L.I. Romanova, 2009, published in Ekologiya, 2009, No. 6, pp. 411–416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudachkova, N.E., Milyutina, I.L. & Romanova, L.I. Adaptive responses of scots pine to the impact of adverse abiotic factors on the rhizosphere. Russ J Ecol 40, 387–392 (2009). https://doi.org/10.1134/S1067413609060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413609060022

Key words

Navigation