Skip to main content
Log in

Geometric isomerism of layered complexes of uranyl selenates: Synthesis and structure of (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)] and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)](H2O)

  • Published:
Radiochemistry Aims and scope

Abstract

New uranyl selenates with organic cations (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)] (I) and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)](H2O) (II) were synthesized by evaporation of aqueous solutions and studied. Compound I has monoclinic symmetry, space group C2/c, a = 16.7572(13), b = 11.7239(12), c = 19.0490(13) Å, β = 98.875(6)°, V = 3697.6(5) Å3, Z = 4. The crystal structure was solved by the direct method and refined to R 1 = 0.085 for 2868 reflections with |F hkl | ≥ 4σ|F hkl |. Compound II has monoclinic symmetry, space group P21/n, a = 10.8252(10), b = 19.0007(10), c = 18.6463(15) Å, β = 100.324(7)°, V = 3773.2(5) Å3, Z = 4. The crystal structure was solved by the direct method and refined to R 1 = 0.084 for 5721 reflections with |F hkl | ≥ 4σ|F khl |. The structures of I and II are based on layered complexes [(UO2)3(SeO4)4(HSeO4)(H2O)]3− formed by combination of uranyl pentagonal bipyramids and selenate tetrahedra. H3O+ cations, water molecules, and protonated methylbutylamine cations are located in the interlayer space. Geometric isomerism of two-dimensional complexes [(UO2)3(SeO4)5(H2O)] in the structures of uranyl selenates was found and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krivovichev, S.V., Kahlenberg, V., Kaindl, R., et al., Angew. Chem., Int. Ed., 2005, vol. 44, pp. 1134–1136.

    Article  CAS  Google Scholar 

  2. Krivovichev, S.V., Kahlenberg, V., Tananaev, I.G., et al., J. Am. Chem. Soc. 2005, vol. 127, pp. 1072–1073.

    Article  CAS  Google Scholar 

  3. Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., et al., Radiokhimiya, 2005, vol. 47, no. 6, pp. 481–491.

    Google Scholar 

  4. Krivovichev, S.V. and Tananaev, I.G., Ross. Khim. Zh., 2005, vol. 49, no. 2, pp. 115–118.

    CAS  Google Scholar 

  5. Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., and Myasoedov, B.F., Dokl. Ross. Akad. Nauk, 2005, vol. 403, no. 3, pp. 349–352.

    Google Scholar 

  6. Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., and Myasoedov, B.F., Radiokhimiya, 2006, vol. 48, no. 3, pp. 197–201.

    Google Scholar 

  7. Sheldrick, G.M., Program for the Refinement of Crystal Structures, Göttingen, 1997.

  8. Lundgren, J.O. and Taesler, I., Acta Crystallogr., Sect. B., 1979, vol. 35, pp. 2384–2386.

    Article  Google Scholar 

  9. Kemnitz, E., Werner, C., and Troyanov, S.I., Acta Crystallogr., Sect. C, 1996, vol. 52, pp. 2665–2666.

    Article  Google Scholar 

  10. Troyanov, S.I., Werner, C., Kemnitz, E., and Worzala, H., Z. Anorg. Allg. Chem., 1995, vol. 621, pp. 1617–1624.

    Article  Google Scholar 

  11. Kemnitz, E., Werner, C., Troyanov, S.I., and Worzala, H., Z. Anorg. Allg. Chem., 1994, vol. 620, pp. 1921–1924.

    Article  CAS  Google Scholar 

  12. Stiewe, A., Kemnitz, E., and Troyanov, S.I., Z. Anorg. Allg. Chem., 1999, vol. 625, pp. 329–335.

    Article  CAS  Google Scholar 

  13. Mercier, R., Douglas, J., Jones, P.G., and Sheldrick, G.M., Acta Crystallogr., Sect. C, 1983, vol. 39, pp. 145–147.

    Article  Google Scholar 

  14. Troyanov, S.I., Stiewe, A., and Kemnitz, E., Z. Naturforsch. (B), 1996, vol. 51, pp. 19–24.

    Google Scholar 

  15. Wickleder, M.S., Z. Anorg. Allg. Chem., 2001, vol. 627, pp. 1439–1440.

    Article  CAS  Google Scholar 

  16. Wickleder, M.S., Z. Anorg. Allg. Chem., 1999, vol. 625, pp. 474–480.

    Article  CAS  Google Scholar 

  17. Krivovichev, S.V., Kahlenberg, V., Kaindl, R., and Mersdorf, E., Eur. J. Inorg. Chem., 2005, pp. 1653–1656.

  18. Mit’kovskaya, E.V., Mikhailov, Yu.N., Gorbunova, Yu.E., et al., Zh. Neorg. Khim., 2003, vol. 48, no. 5, pp. 755–757.

    CAS  Google Scholar 

  19. Blatov, V.A., Serezhkina, L.B., Serezhkin, V.N., and Trunov, V.K., Koord. Khim., 1988, vol. 14, no. 12, pp. 1705–1708.

    CAS  Google Scholar 

  20. Krivovichev, S.V. and Kahlenberg, V., Radiokhimiya, 2005, vol. 47, no. 5, pp. 412–414.

    Google Scholar 

  21. Krivovichev, S.V. and Kahlenberg, V., Radiokhimiya, 2005, vol. 47, no. 5, pp. 415–418.

    Google Scholar 

  22. Krivovichev, S.V. and Kahlenberg, V., Z. Anorg. Allg. Chem., 2005, vol. 631, pp. 739–744.

    Article  CAS  Google Scholar 

  23. Potapov, V.M., Stereokhimiya (Stereochemistry), Moscow: Khimiya, 1976.

    Google Scholar 

  24. Flapan, E., When Topology Meets Chemistry. A Topological Look at Molecular Chirality, Cambridge: Cambridge Univ. Press, 2000.

    Google Scholar 

  25. Moore, P.B., N. Jb. Miner. Mh., 1970, vol. 1970, pp. 163–173.

    Google Scholar 

  26. Moore, P.B., N. Jb. Miner. Mh., 1975, vol. 1975, pp. 148–159.

    Google Scholar 

  27. Krivovichev, S.V., Crystallogr. Rev., 2004, vol. 10, pp. 185–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Krivovichev, I.G. Tananaev, B.F. Myasoedov, 2006, published in Radiokhimiya, 2006, Vol. 48, No. 6, pp. 497–503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivovichev, S.V., Tananaev, I.G. & Myasoedov, B.F. Geometric isomerism of layered complexes of uranyl selenates: Synthesis and structure of (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)] and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)](H2O). Radiochemistry 48, 552–560 (2006). https://doi.org/10.1134/S1066362206060026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362206060026

PACS numbers

Navigation