Skip to main content
Log in

Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits

Journal of Computer and Systems Sciences International Aims and scope

Abstract

An algorithm for searching hidden oscillations in dynamic systems is developed to help solve the Aizerman’s, Kalman’s and Markus-Yamabe’s conjectures well-known in control theory. The first step of the algorithm consists in applying modified harmonic linearization methods. A strict mathematical substantiation of these methods is given using special Poincare maps. Subsequent steps of the proposed algorithms rely on the modern applied theory of bifurcations and numerical methods of solving differential equations. These algorithms help find and localize hidden strange attractors (i.e., such that a basin of attraction of which does not contain neighborhoods of equilibria), as well as hidden periodic oscillations. One of these algorithms is used here to discover, for the first time, a hidden strange attractor in the dynamic system describing a nonlinear Chua’s circuit, viz. an electronic circuit with nonlinear feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. A. Aizerman, “On a Problem Concerning Stability in “Large” of Dynamic Systems,” Usp. Mat. Nauk 4(4), 186–188 (1949).

    MathSciNet  Google Scholar 

  2. A. M. Letov, Stability of Nonlinear Control Systems (GTTI, Moscow, 1955) [in Russian].

    Google Scholar 

  3. M. A. Aizerman and F. R. Gantmakher, Absolute Stability of Control Systems (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  4. S. L. Lefschetz, Stability of Nonlinear Control Systems (Academic, New York, London, 1965).

    MATH  Google Scholar 

  5. A. F. Filippov, Differential Equations with Different Right Sides (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  6. I. G. Malkin, “On Stability of Automatic Control Systems,” Prikl. Mat. Mekh. 16(4), 495–499 (1952).

    MathSciNet  MATH  Google Scholar 

  7. N. P. Erugin, “On a Problem of the Stability Theory of Automatic Control Systems,” Prikl. Mat. Mekh. 16(5), 620–628 (1952).

    MathSciNet  MATH  Google Scholar 

  8. N. N. Krasovskii, “Theorems on Stability of Motions Determined by a System of Two Equations,” Prikl. Mat. Mekh. 16(5), 547–554 (1952).

    MathSciNet  Google Scholar 

  9. V. A. Pliss, Certain Problems of Motion Stability (Leningr. Gos. Univ., Leningrad, 1958) [in Russian].

    Google Scholar 

  10. V. A. Yakubovich, “On Boundedness and Stability in Large of Solutions of Certain Nonlinear Differential Equations,” Dokl. Akad. Nauk SSSR 121(6), 984–986 (1958).

    MathSciNet  MATH  Google Scholar 

  11. A. R. Efendiev and M. A. Balitinov, “On Asymptotic Stability in Large of a Nonlinear System,” Differets. Uravneniya 4(4), 618 (1968).

    MathSciNet  Google Scholar 

  12. G. A. Leonov, “On Stability in Large of Nonlinear Systems in the Critical Case of Two Nonzero Roots,” Prikl. Mat. Mekh. 45(4), 752–755 (1981).

    MathSciNet  Google Scholar 

  13. R. E. Kalman, “Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems,” Transactions of ASME 79, 553–566 (1957).

    MathSciNet  Google Scholar 

  14. G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency Methods for Nonlinear Analysis. Theory and Applications (World Sci., Singapore, 1996).

    Book  MATH  Google Scholar 

  15. L. Markus and H. Yamabe, “Global Stability Criteria for Differential Systems,” Osaka Math. J 12, 305–317 (1960).

    MathSciNet  MATH  Google Scholar 

  16. A. A. Glutsyuk, “Asymptotic Stability of Linearization of a Vector Field in the Plane Having Singular Points Implies Global Stability,” Funktsional’nyi Analiz i Ego Prilozhenie 29(4), 17–30 (1995).

    MathSciNet  Google Scholar 

  17. R. Fessler A Proof of the Two-dimensional Markus-Yamabe Stability Conjecture and a Generalization, Annedes. Polonici. Mathematici 62, 45–47 (1995).

    MathSciNet  MATH  Google Scholar 

  18. C. Gutierrez, “A Solution to the Bidimensional Global Asymptotic Stability Conjecture,” Ann. Inst. H. Poincare Anal. Non Lineaire 12, 627–671 (1995).

    MathSciNet  MATH  Google Scholar 

  19. A. Cima, A. Essen, A. Gasull, et al., Advances in Mathematics 131(2), 453–457 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. A. Leonov, “On the Necessity of a Frequency Condition of Absolute Stability of Stationary Systems in the Critical Case of a Pair of Purely Imaginaty Roots,” Dokl. Akad. Nauk SSSR 193(4), 756–759 (1970).

    MathSciNet  Google Scholar 

  21. E. Noldus, “A Counterpart of Popov’s Theorem for the Existence of Periodic Solutions,” Int. J. Control 13, 705–719 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  22. N. M. Krylov and N. N. Bogolyubov, New Methods of Nonlinear Mechanics (Gostekhteorizdat, Moscow, 1934) [in Russian].

    Google Scholar 

  23. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (AN USSR, Kiev, 1937) [in Russian].

    Google Scholar 

  24. M. A. Aizerman, Lecture on Automatic Control Theory (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  25. E. P. Popov, Computation of Nonlinear Automatic Systems Based on Harmonic Linearization (Sudpromgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  26. E. P. Popov and I. P. Pal’tov, Approximative Methods of Investigation of Nonlinear Automatic Systems (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  27. E. N. Rozenvasser, Oscillations of Nonlinear Systems (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  28. J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, New York, 1968; Mashinostroenie, Moscow, 1972).

    MATH  Google Scholar 

  29. E. P. Popov, The Theory of Nonlinear Automatic Regulation and Control Systems (Nauka, Moscow, 1979).

    Google Scholar 

  30. V. A. Besekerskii and E. P. Popov, Automatic Control Systems Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  31. A. A. Pervozvanskii, Course of Automatic Control Theory (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  32. H. K. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, 2002).

    MATH  Google Scholar 

  33. Ya. Z. Tsypkin, Theory of Relay Automatic Control Systems (Gostekhizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  34. B. V. Bulgakov, “Auto-Oscillations of Control Systems,” Prikl. Mat. Mekh. 7(2), 97–108 (1943).

    MathSciNet  MATH  Google Scholar 

  35. B. V. Bulgakov, Oscillations (Gostekhizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  36. M. A. Aizerman, “Physical Foundations of Application of Small parameter Methods to Solving Nonlinear Problems of Automatic Control Theory,” Avtom. Telemekh. 14(5), 597–603 (1953).

    Google Scholar 

  37. E. D. Garber and E. N. Rozenvasser, “On Investigation of Periodic Modes of Nonlinear Systems Based on Filter Hypothesis,” Avtom. Telemekh. 26(2), 277–287 (1965).

    Google Scholar 

  38. A. R. Bergen and R. L. Franks, “Justification of the Describing Function Method,” SIAM J. Control 9(4), 568–589 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  39. A. I. Mees and A. R. Bergen, “Describing Functions Revisited,” IEEE Trans. Autom. Control AC-20(4), 473–478 (1975).

    Article  MathSciNet  Google Scholar 

  40. B. Van der Pol, “Forced Oscillations in a Circuit with Nonlinear Resistance (Receptance with Reactive Triode),” Edinburgh and Dublin Philosophical Magazine, 3, 65–80 (1927).

    Google Scholar 

  41. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations (Nauka, Moscow, 1937) [in Russian].

    Google Scholar 

  42. J. J. Stoker, Nonlinear Vibrations in Mechanical and Electric Systems (Wiley, New York, 1995; Inostrannaya Literatura, Moscow, 1952) [in Russian].

    Google Scholar 

  43. K. F. Teodorchik, Auto-Oscillation Systems, 3rd Ed. (GITTL, Moscow, 1952) [in Russian].

    Google Scholar 

  44. G. S. Gorelik, Oscillations and Waves, 2nd Ed. (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  45. G. A. Leonov, “On Harmonic Linearization Method,” DAN. Mekhanika 424(4), 462–464 (2009).

    MATH  Google Scholar 

  46. G. A. Leonov, “On Harmonic Linearization Method,” Avtom. Telemekh. 5, 65–75 (2009).

    MathSciNet  Google Scholar 

  47. G. A. Leonov, “On Aizerman’s Problem,” Avtom. Telemekh. 7, 37–49 (2009).

    MathSciNet  Google Scholar 

  48. G. A. Leonov, “Efficient Methods of searching Periodic Oscillations in Dynamic Systems,” Prikl. Mat. Mekh. 74(1), 37–73 (2010).

    MathSciNet  Google Scholar 

  49. E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  50. O. E. Rössler, “An Equation for Continuous Chaos,” Phys. Lett. 57A, 397–398 (1976).

    Google Scholar 

  51. G. A. Leonov, Control Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2006) [in Russian].

    Google Scholar 

  52. A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (FIZMATLIT, Moscow, 2004) [in Russian].

    Google Scholar 

  53. G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “An Algorithm of Localization of Chua Attractors Based on the Harmonic Linearization Method,” DAN. Matematika 433(3), 323–326 (2010).

    MathSciNet  Google Scholar 

  54. V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Localization of Attractors of the Chua Generalized System Based on the Harmonic Linearization Method,” Vestnik Sankt-Peterburgskogo Universiteta 1(4), 62–76 (2010).

    MathSciNet  Google Scholar 

  55. V. O. Bragin, N. V. Kuznetsov, and G. A. Leonov, “Algorithm for Counterexamples Construction for Aizerman’s and Kalman’s Conjectures,” Proceedings of 4th IFAC Worlshop on Periodic Control System, 2010.

  56. G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “an Algorithm for Constructing Counterexamples to Kalman’s Problem,” DAN. Matematika 433(2), 163–166 (2010).

    Google Scholar 

  57. V. Blondel and A. Megretski, Unsolved Problems in Mathematical Systems and Control Theory (Princeton University Press, Princeton, 2004).

  58. J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, 1968).

  59. L. C. Westphal, Handbook of Control Systems Engineering (Springer, Berlin, 2001).

    Google Scholar 

  60. R. E. Fitts, “Two Counterexamples to Aizerman’s Conjecture,” Trans. IEEE AC-11(3), 553–556 (1966).

    Google Scholar 

  61. N. E. Barabanov, “Mathematical Life in the USSR. In Leningrad Mathematical Society,” Usp. Mat. Nauk 37(1), 163–167 (1982).

    MathSciNet  Google Scholar 

  62. N. E. Barabanov, “On Kalman’s Problem,” Sib. Mat. Zh. 29(3), 3–11 (1988).

    MathSciNet  Google Scholar 

  63. J. Bernat and J. Llibre, “Counterexample to Kalman and Markus-Yamabe Conjectures in Dimension Larger Than 3,” Dynam. Contin. Discrete Impuls. Systems 2(3), 337–379 (1996).

    MathSciNet  MATH  Google Scholar 

  64. A. A. Andronov and A. G. Maier, “On the Vyshnegradkii Problem in the Theory of Direct Control,” Avtom. Telemekh. 8(5) (1947).

  65. A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  66. G. Meisters, A Biography of the Markus-Yamabe Conjecture, 1996, http://www.math.unl.edu/gmeisters1/papers/HK1996.pdf.

  67. A. A. Glutsyuk, “Markus-Yamabe Problem in Global Stability: Two-Dimensional Proof and Tree-Dimensional Counterexample,” Usp. Mat. Nauk 53(2), 169–172 (1998).

    Google Scholar 

  68. R. Genesio, A. Tesi, and F. Villoresi, “A Frequency Approach for Analyzing and Controlling Chaos in Nonlinear Circuits,” IEEE Trans. on Circuits and Systems I-fundamental Theory and Applications 40(11), C. 819–828 (1993).

    Article  MATH  Google Scholar 

  69. M. Basso, L. Giovanardi, R. Genesio, et al., “An Approach for Stabilizing Periodic Orbits in Nonlinear Systems,” in Proceedings of European Control Conference, Karlsruhe, Germany, 1999.

  70. L. O. Chua and G. N. Lin, “Canonical Realization of Chua’s Circuit Family,” IEEE Trans. on Circuits and Systems 37(4), 885–902 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  71. L. O. Chua, “The Genesis of Chua’s Circuit,” Archiv fur Elektronik und Ubertragungstechnik 46, 250–257 (1992).

    Google Scholar 

  72. L. O. Chua, “A Zoo of Strange Attractors from the Canonical Chua’s Circuits,” in Proceedings of the 35th IEEE Midwest Symposium on Circuits and Systems, (Cat. No.92CH3099-9), Washington, USA, 1992, Vol. 2, pp. 916–926.

  73. L. O. Chua, “Global Unfolding of Chua’s Circuit,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E76-A, 704–734 (1993).

    Google Scholar 

  74. L. O. Chua, “A Glimpse of Nonlinear Phenomena from Chua’s Oscillator,” Philosophical Transactions: Physical Sciences and Engineering 353, 3–12 (1701).

    Article  MathSciNet  Google Scholar 

  75. L. O. Chua, L. Pivka, and C. W. Wu, “A Universal Circuit for Studying Chaotic Phenomena,” Philosophical Transactions: Physical Sciences and Engineering 353(1701), 65–84 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  76. E. Bilotta and P. Pantano, “A Gallery of Chua Attractors,” World Scientific Series on Nonlinear Science, Series A 61 (2008).

  77. G. A. Leonov and N. V. Kuznetsov, “Time-Varying Linearization and the Perron Effects,” Int. Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  78. G. Q. Zhong and F. Ayrom, “Periodicity and Chaos in Chua’s Circuit,” IEEE Trans. on Circuits and Systems CAS-32(5), 501–503 (1985).

    Article  MathSciNet  Google Scholar 

  79. J. A. K. Suykens and J. Vandewalle, “Generation of n-Double Scrolls (n = 1, 2, 3, 4, …),” IEEE Trans. on Circuits and Systems,” I: Fundamental Theories and Applications 40(11), 861–867 (1993).

    Article  MATH  Google Scholar 

  80. J. A. K. Suykens, A. Huang, and L. O. Chua, “A Family of N-Scroll Attractors from a Generalized Chua’s Circuit,” AEU-Int. J. Electronics & Communications 51(3), 131–138 (1997).

    Google Scholar 

  81. M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “On the Realization of N-Scroll Attractors,” in Proceedings of IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999, Vol. 5, pp. 483–486.

  82. M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “Experimental Confirmation of 3- and 5-Scroll Attractors from a Generalized Chua’s Circuit,” IEEE Trans. on Circuits and Systems,” Part I: Fundamental Theory and Applications 47(3), 425–429 (2000).

    Article  Google Scholar 

  83. J. A. K. Suykens, M. E. Yalcin, and J. Vandewalle, “A Generic Class of Chaotic and Hyperchaotic Circuits with Synchronization Methods,” Chaos in Circuits and Systems (2002).

  84. K. S. Tang, K. F. Man, G. Q. Zhong, et al., “Some New Circuit Design for Chaos Generation,” Chaos in Circuits and Systems, Ser. B 11, 151–170 (2002).

    Google Scholar 

  85. K. S. Tang, G. Q. Zhong, K. F. Man, and G. Chen, “A Systematic Approach to Generating N-Scroll Attractors,” Intern. J. Bifurcation and Chaos 12(12), 2907–2915 (2002).

    Article  Google Scholar 

  86. F. A. Savaci and S. Gunel, “Harmonic Balance Analysis of the Generalized Chua’s Circuit,” Int. J. Bifurcation and Chaos 16(8), 2325–2332 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  87. N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-Numerical Method for Localization of Attractors of Generalization Chua System,” in Proceedings of 4th IFAC Workshop on Periodic Control Systems, Antalia, Turkey, 2010.

  88. G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, “Localization of Hidden Chua’s attractors,” Physics Letters A. 2011 (doi:10.1016/j.physleta.2011.04.037).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.O. Bragin, V.I. Vagaitsev, N.V. Kuznetsov, G.A. Leonov, 2011, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2011, No. 4, pp. 3–36.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V. et al. Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50, 511–543 (2011). https://doi.org/10.1134/S106423071104006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106423071104006X

Keywords

Navigation