Skip to main content
Log in

Estimation of systematic errors of onboard measurement of angle of attack and sliding angle based on integration of data of satellite navigation system and identification of wind velocity

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A method for estimation of systematic errors of onboard measurement of angle of attack and sliding angle of an aircraft in the course of flight tests using high precision velocity measurements performed by a satellite navigation system is proposed. The main specific feature of the proposed method is that for providing compatibility of measurements of angle of attack and sliding angle sensors and data of the satellite navigation system the identification of wind velocity on the processed leg is used. The operation of the proposed method and the correctness of applied assumptions are proved by processing large amounts of experimental data obtained in the course of flight tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Vedrov and M. A. Taits, Flight Testing of Aircrafts (Oborongiz, Moscow, 1951) [in Russian].

    Google Scholar 

  2. W. Gracey, Summary of Methods of Measuring Angle of Attack on Aircraft. NACA Technical Note 4351 (NACA, Washington, 1958).

    Google Scholar 

  3. E. A. Haering, Airdata Measurement and Calibration. NASA Technical Memorandum 104316 (Dryden Flight Research Center, Edwards, California, 1995).

    Google Scholar 

  4. K. K. Vasil’chenko, V. A. Leonov, I. M. Pashkovskii, et al., Aircraft Flight Testing (Mashinostroenie, Moscow, 1993) [in Russian].

    Google Scholar 

  5. V. M. Soldatkin, Methods and Means for Measuring FV Aerodynamic Angles (Izd. KGTU, Kazan, 2001) [in Russian].

    Google Scholar 

  6. G. I. Klyuev, V. P. Derevyankin, V. M. Soldatkin, et al., Meters of FV Aerodynamic Parameters (Izd. UlGTU, Ul’yanovsk, 2005) [in Russian].

    Google Scholar 

  7. K. P. A. Lievens, J. A. Mulder, and P. Chu, “Single GPS Antenna Attitude Determination of a Fixed Wing Aircraft Aided with Aircraft Aerodynamics,” AIAA Guidance, Navigation and Control Conference and Exhibit (San-Francisco, California, 2005).

  8. T. P. Bui, Meteorological Measurement Systems (MMS) (NASA Ames Research Center, 2006).

  9. S. G. Pushkov, E. G. Kharin, V. R. Kozhurin, et al., “Technology for Determination of Aerodynamic Errors of APSs and Air Parameters in Flight Tests of Aircrafts Using Satellite Tools of Trajectory Measurements,” Problemy bezopasnosti poletov, no. 7, 12–19 (2006).

  10. O. N. Korsun, A. V. Zinov’ev, O. P. Lysyuk, et al., “Algorithm for Estimation of Constant Component of Measurement Error for Air Velocity with Account of Wind Velocity,” Vestn. Kompyutern. Informats. Tekhnol., No. 9, 2–6 (2008).

  11. O. N. Korsun, A. V. Zinov’ev, O. P. Lysyuk, and O. N. Grebnev, “Esimation of Measurement Errors for Velocity and Altitude by Satellite Navigation System at Aircraft Maneuvering,” Problemy Bezopasnosti Poletov, No. 10, 49–58 (2008).

  12. K. K. Vasil’chenko, Yu. A. Kochetkov, V. A. Leonov, et al., Structural Identification of Mathematical Model of Aircraft Motion (Mashinostroenie, Moscow, 1993) [in Russian].

    Google Scholar 

  13. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill Posed Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  14. O. N. Korsun, “Principles of Parametric Identification of Mathematical Models of Aircrafts Using Flight Test Data,” Mekhatron. Avtomat., Upravlen., No. 6, 2–7 (2008).

  15. GOST 20058-80. Aircraft Dynamics in Atmosphere. Terms, Definitions and Symbols (Izd. Standartov, Moscow, 1981) [in Russian].

    Google Scholar 

  16. L. Ljung, System Identification Theory for the User (Prentice Hall, 1987; Nauka, Moscow, 1991) [in Russian].

  17. E. Seidzh and Dzh. Mels, Estimation Theory and its Application in Communication and Control (McGraw-Hill, New York, 1972; Svyaz’, Moscow, 1976).

    Google Scholar 

  18. E. Sage and J. Mels, Management Systems’ Identification (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  19. Modern Identification Methods, ed. by P. Eickhoff (Mir, Moscow, 1986) [in Russian].

    Google Scholar 

  20. Handbook on the Theory of Automatic Control, ed. by A. A. Krasovskii (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  21. Ya. Z. Tsypkin, Foundations of the Information Identification Theory (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  22. P. Eickhoff, Priinciples of Identification of Control Systems (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  23. Yu. V. Linnik, Method of Least Squares and Principles of the Theory of Observations (Fizmatgiz, Moscow, 1962; Pergamon Press, Oxford, 1961).

    Google Scholar 

  24. Proceedings of 7th IFAC Symposium on Identification and System Parameter Estimation (IFAC, York, 1985).

  25. Proceedings of 8th IFAC Symposium on Identification and System Parameter Estimation (IFAC, Beijing, 1988).

  26. Proceedings of II International Congress “System Identification and Control Problems (FICPRO’03) (Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, 2003) [in Russian].

  27. Proceedings of International Scientific-Technical Conference “Identification of Flying Vehicles, Power Installations, and Aviation Equipment” (Gromov Flight Research Institute, Zhukovskii, 1994) [in Russian].

  28. L. M. Berestov, B. K. Poplavskii, and L. Ya. Miroshnichenko, Frequency Methods for Identification of Aircraft (Mashinostroenie, Moscow, 1985) [in Russian].

    Google Scholar 

  29. A. S. Belotserkovskii, B. O. Kachanov, Yu. B. Kulifeev, and V. I. Morozov, Creation and Application of Mathematic Models of Aircraft (Nauka, Moscow (1984) [in Russian].

    Google Scholar 

  30. V. Klein, “Estimation of Aircraft Aerodynamic Parameters from Flight Data,” Prog. Aerospace Sñi, No. 26, 1–77 (1989).

  31. R. E. Main and K. W. Iliff, Identification of Dynamic Systems: Theory and Formulation (NASA Reference Publication, 1138, 1985).

  32. O. N. Korsun, “Identification of the Longitudinal Motion of a Statically Unstable Aircraft Based on the Parallel Model,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 3, 34–39 (2001) [Comp. Syst. Sci. 40 (3), 385–390 (2001)].

  33. B. O. Kachanov, “Method of Spectral-Time Identification of Dynamic Systems,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 3, 147–152 (1993).

  34. Yu. B. Kulifeev, “Discrete-Continuous Method for Identification of Continuous Systems,” Izv. Akad. Nauk SSSR, Mekhanika Tverdogo Tela, No. 5, 47–55 (1981).

  35. O. N. Korsun, “Algorithm of Identification of Dynamic Systems with Functional in the Frequency Domain,” Avtom. Telemekh., No. 5, 111–121 (2003).

  36. V. A. Leonov and B. K. Poplavskii, “Method of Linear Transformations of Identification of Dynamic Systems,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 2, 21–28 (1990).

  37. I. N. Beloglazov, “Multidimensional Analysis in Problems of Education Qualimetry,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 6, 39–52 (2006) [Comp. Syst. Sci. 45 (6), 881–893 (2006)].

  38. A. A. Alekseev, Yu. A. Korablev, and M. Yu. Shestopalov, Identification and Diagnostics of Systems (Akademiya, Moscow, 2009) [in Russian].

    Google Scholar 

  39. Yu. P. Dobrolenskii, Flight Dynamics in a Disturbed Atmosphere (Mashinostroenie, Moscow, 1969) [in Russian].

    Google Scholar 

  40. N. N. Moiseev, Yu. P. Ivanilov, and E. M. Stolyarova, Optimization Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  41. Handbook on Applied Statistics, ed. by E. Lloyd and W. Lederman, vol. 1, (Fizika i Statistika, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Korsun.

Additional information

Original Russian Text © O.N. Korsun, B.K. Poplavskii, 2011, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2011, No. 1, pp. 133–146.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korsun, O.N., Poplavskii, B.K. Estimation of systematic errors of onboard measurement of angle of attack and sliding angle based on integration of data of satellite navigation system and identification of wind velocity. J. Comput. Syst. Sci. Int. 50, 130–143 (2011). https://doi.org/10.1134/S1064230711010126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230711010126

Keywords

Navigation