Skip to main content
Log in

Application of Mathematical Models ROMUL and Romul_Hum for Estimating CO2 Emission and Dynamics of Organic Matter in Albic Luvisol under Deciduous Forest in the South of Moscow Oblast

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The aim of this study was to validate the ROMUL and Romul_Hum simulation models based on the data of long-term measurements of soil respiration performed by the Institute of Physicochemical and Biological Problems in Soil Sciences of the Russian Academy of Sciences in the south of Moscow oblast (54°50′ N, 37°34′ E). We estimated the dynamics of carbon stocks and soil CO2 emission for three scenarios of plant litterfall compiled with the account of experimental data on the composition and mass of litterfall entering the gray forest soil (Albic Luvisol) under secondary deciduous forest. The calculations of long-term series of temperature and moisture content in the forest litter and upper organo-mineral soil horizons in simulation experiments are based on the real data on air temperature and precipitation for 1973–2016. The correspondence of simulation results to the data of field measurements was better for the Romul_Hum model, which comprises a description of the effects related to the vital activity of soil fauna, leading to the formation of different fractions of soil organic matter. The best correspondence of simulated values of CO2 emission, carbon stocks, and the C : N ratios in gray forest soil horizons to field data was for the litter scenarios, which excluded the fraction of small branches. The revealed differences between the simulated and real values of soil parameters are explained by specific features of the input and transformation of different litterfall fractions, which are not always taken into account during soil sampling. The results of the study attract the attention to the uncertainties of estimates of carbon budget in forest ecosystems due to the difficulties of accounting both large wood residues (dead tree and coarse branches debris) and smaller wood fractions in the litterfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. G. Bogatyrev, I. A. Sventitskii, R. N. Sharafutdinov, and A. L. Stepanov, “Forest litters and the diagnostics of the modern trend in humus formation in different geographical zones,” Eurasian Soil Sci. 31, 787–796 (1998).

    Google Scholar 

  2. L. G. Bogatyrev, V. V. Demin, G. V. Matyshak, and V. A. Sapozhnikova, “Theoretical aspects of the study of forest litter,” Lesovedenie, No. 4, 17–29 (2004).

    Google Scholar 

  3. S. S. Bykhovets, “Parameterization of humidity of forest litter in a simple model of water balance of forest soils,” in Proceedings of the Third National Scientific Conference with International Participation “Mathematical Modeling in Ecology” (Pushchino, 2013), pp. 40–41.

  4. S. S. Bykhovets and A. S. Komarov, “A simple statistical model of soil climate with a monthly step,” Eurasian Soil Sci. 35, 392–400 (2002).

    Google Scholar 

  5. M. L. Gitarskiy, D. G. Zamolodchikov, V. A. Mukhin, V. A. Grabar, D. K. Diyarova, and A. I. Ivashchenko, “Carbon fluxes from coarse woody debris in southern taiga forests of the Valdai Upland,” Russ. J. Ecol. 48, 539–544 (2017). https://doi.org/10.1134/S1067413617060030

    Article  Google Scholar 

  6. A. A. Goncharov and A. V. Tiunov, “Trophic chains in the soil,” Biol. Bull. Rev. 4, 393–403 (2014).

    Article  Google Scholar 

  7. S. A. Gromov, E. S. Zhigacheva, and D. D. Pokrovskii, “Assessment of dry atmospheric deposition of sulfur and nitrogen in the Prioksko-Terrasny Nature Reserve according to the EMEP station data,” Ekol. Sist. Pribory, No. 2, 10–17 (2018).

    Google Scholar 

  8. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  9. Ph. Duchaufour, “New data on humification in forest soils under temperate conditions,” Eurasian Soil Sci. 31 (7), 803–808 (1998).

    Google Scholar 

  10. I. V. Yevdokimov, A. A. Larionova, V. O. Lopes de Gerenyu, M. Schmitt, and M. Bahn, “Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method,” Eurasian Soil Sci. 43, 321–327 (2010).

    Article  Google Scholar 

  11. I. V. Yevdokimov, A. A. Larionova, and A. F. Stulin, “Turnover of "new” and “old” carbon in soil microbial biomass,” Microbiology (Moscow) 82, 505–516 (2013). https://doi.org/10.1134/S0026261713040036

    Article  Google Scholar 

  12. D. V. Karelin, D. G. Zamolodchikov, and A. S. Isaev, “Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests,” Dokl. Biol. Sci. 475, 165–168 (2017). https://doi.org/10.1134/S0012496617040093

    Article  Google Scholar 

  13. D. V. Karelin, A. V. Pochikalov, D. G. Zamolodchikov, and M. L. Gitarskii, “Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai,” Contemp. Probl. Ecol. 7, 743–751 (2014).

    Article  Google Scholar 

  14. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  15. L. V. Kravchenko, N. S. Strigul, and I. A. Shvytov, “Mathematical simulation of the dynamics of interacting populations of rhizosphere microorganisms,” Microbiology (Moscow) 73, 189–195 (2004).

    Article  Google Scholar 

  16. M. A. Kuznetsov, “Effect of decomposition conditions and composition of litter on characteristics and reserves of litter in middle-taiga blueberry-sphagnum spruce forest,” Lesovedenie, No. 6, 54–60 (2010).

    Google Scholar 

  17. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “CO2 emission from soils of various ecosystems of the Southern Taiga Zone: data analysis of continuous 12-year monitoring,” Dokl. Biol. Sci. 436, 56–58 (2011).

    Article  Google Scholar 

  18. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, I. Yu. Savin, and E. V. Shorohova, “Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate,” Contemp. Probl. Ecol. 10, 748–760 (2017).

    Article  Google Scholar 

  19. I. N. Kurganova, V. O. Lopes de Gerenyu, V. A. Ableeva, and S. S. Bykhovets, “Climate of Southern Moscow region: modern trends and extreme rating,” Fundam. Prikl. Klimatol., No. 4, 62–78 (2017). https://doi.org/10.21513/2410-8758-2017-4-66-82

  20. A. A. Larionova, I. V. Yevdokimov, I. N. Kurganova, D. V. Sapronov, V. O. Lopes de Gerenju and L. G. Kuznetsova, “Root respiration and its contribution to the CO2 emission from soil,” Eurasian Soil Sci. 36, 173–184 (2003).

    Google Scholar 

  21. A. A. Larionova, B. N. Zolotareva, A. K. Kvitkina, V. N. Kudeyarov, Yu. G. Kolyagin, and V. V. Kaganov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eurasian Soil Sci. 48, 1110–1119 (2015). https://doi.org/10.1134/S1064229315100063

    Article  Google Scholar 

  22. Modeling of Dynamics of Organic Matter in Forest Ecosystems, Ed. by V. N. Kudeyarov (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  23. Modeling of Erosion Processes in the Territory of Small Watershed Basin, Ed. by A. S. Kerzhentsev and R. Meisner (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  24. M. A. Nadporozhskaya, Candidate’s Dissertation in Biology (St. Petersburg, 2000).

  25. M. A. Nadporozhskaya, O. G. Chertov, and N. V. Kovsh, “Comparative dynamics of nitrogen and carbon losses during transformation of organic matter in laboratory models,” in Humus and Pedogenesis (St. Petersburg, 2000), pp. 15–30.

  26. M. A. Nadporozhskaya, O. G. Chertov, P. Čudlin, F. Novak, S. S. Bykhovets, A. S. Komarov, and A. V. Mikhailov, “Analysis of the soil organic matter stability in spruce forests of Krkonose in Czechia on the basis of the ROMUL mathematical model,” Eurasian Soil Sci. 42, 657–667 (2009).

    Article  Google Scholar 

  27. N. S. Nikolaev and V. A. Ableeva, “Characteristicsof climatic parameters in the Prioksko-Terrasny Nature Reserve in 1973–2014,” Tr. Prioksko-Terrasn. Zapoved., No. 6, 11–23 (2015).

  28. N. P. Remezov, L. N. Bykova, and K. M. Smirnova, Consumption and Cycle of Nitrogen and Ash Elements in Forests of the European Part of the Soviet Union (Moscow State Univ., Moscow, 1959) [in Russian].

    Google Scholar 

  29. I. M. Ryzhova, “Modeling of dynamics of soil organic matter,” Agrokhimiya, No. 12, 71–80 (2011).

    Google Scholar 

  30. D. V. Sapronov, “Dynamics of carbon input into soils with litter,” in Proceedings of the VIII All-Russia Scientific Conference with International Participation “Forest Soils and Functions of Forest Ecosystems” (Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, 2019), pp. 303–305.

  31. A. S. Komarov, E. V. Zubkova, S. L. Zudin, O. G. Chertov, M. A. Nadporozhskaya, and S. S. Bykhovets, RF Patent No. 2018614584, (2018).

  32. P. F. Svistov, N. A. Pershina, A. I. Polishchuk, M. T. Pavlova, and E. S. Semenets, Annual Data on Chemical Composition and Acidity of Atmospheric Precipitation in 2011–2015: A Review (St. Petersburg, 2016) [in Russian].

  33. V. M. Telesnina, O. V. Semenyuk, and L. G. Bogatyrev, “Features of forest litters in conjunction with ground cover in the forest ecosystems of Moscow oblast (based on the example of the Chashnikovo Educational-Experimental Soil-Ecological Center),” Moscow Univ. Soil Sci. Bull. 72, 151–160 (2017).

    Article  Google Scholar 

  34. O. G. Chertov, “Simulation model of mineralization and humification of forest litter,” Zh. Obshch. Biol. 46, 794–804 (1986).

    Google Scholar 

  35. O. G. Chertov and A. S. Komarov, “Model of dynamics of soil organic matter,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 1, 23–30 (1996).

  36. O. G. Chertov and A. S. Komarov, “Theoretical approaches to modelling the dynamics of soil organic matter,” Eurasian Soil Sci. 46, 845–853 (2013). https://doi.org/10.1134/S1064229313080012

    Article  Google Scholar 

  37. O. V. Chestnykh, D. G. Zamolodchikov, and A. I. Utkin, “Total reserves of biological carbon and nitrogen in soils of the forest fund of Russia,” Lesovedenie, No. 4, 30–42 (2004).

    Google Scholar 

  38. E. V. Shein, “Physically based mathematical models in soil science: history, current state, problems, and outlook (analytical review),” Eurasian Soil Sci. 48, 712–718. (2015). https://doi.org/10.1134/S1064229315070091

    Article  Google Scholar 

  39. S. Blagodatsky and O. Richter, “Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms,” Soil Biol. Biochem. 30 (13), 1743–1755 (1998). https://doi.org/10.1016/S0038-0717(98)00028-5

    Article  Google Scholar 

  40. O. G. Chertov and A. S. Komarov, “SOMM: a model of soil organic matter dynamics,” Ecol. Model. 94, 177–189 (1997). https://doi.org/10.1016/S0304-3800(96)00017-8

    Article  Google Scholar 

  41. O. G. Chertov, A. S. Komarov, G. Crocker, P. Grace, J. Klir, M. Körschens, P. R. Poulton, and D. Richter, “Simulating trends of soil organic carbon in seven long-term experiments using the SOMM model of the humus types,” Geoderma 81, 121–135 (1997). https://doi.org/10.1016/S0016-7061(97)00085-2

    Article  Google Scholar 

  42. O. G. Chertov, A. S. Komarov, and A. V. Tsiplianovsky, “A combined simulation model of Scots pine, Norway spruce and silver birch ecosystems in European boreal zone,” For. Ecol. Manage. 116, 189–206 (1999). https://doi.org/10.1016/S0378-1127(98)00456-3

  43. O. G. Chertov, A. S. Komarov, and A. V. Tsiplianovsky, “Simulation of soil organic matter and nitrogen accumulation in Scots pine plantations on bare parent material using forest combined model EFIMOD,” Plant Soil 213, 31–41 (1999)./https://doi.org/10.1023/A:1004528910399

  44. O. G. Chertov, A. S. Komarov, M. A. Nadporozhskaya, S. S. Bykhovets, and S. L. Zudin, “ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling,” Ecol. Model. 138, 289–308 (2001). https://doi.org/10.1016/S0304-3800(00)00409-9

    Article  Google Scholar 

  45. O. Chertov, A. Komarov, S. Bykhovets, P. Frolov, V. Shanin, P. Grabarnik, I. Priputina, E. Zubkova, M. Shashkov, and C. Shaw, “Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterization of the soil food web biota activity,” Ecol. Model. 345, 125–139 (2017). https://doi.org/10.1016/j.ecolmodel.2016.10.024

    Article  Google Scholar 

  46. O. Chertov, C. Shaw, M. Shashkov, A. Komarov, S. Bykhovets, V. Shanin, P. Grabarnik, P. Frolov, O. Kalinina, I. Priputina, and E. Zubkova, “Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. III. Parameterization of earthworm activity,” Ecol. Model. 345, 140–149 (2017). https://doi.org/10.1016/j.ecolmodel.2016.06.013

    Article  Google Scholar 

  47. Y. Ding, J. Leppälammi-Kujansuu, and H.-S. Helmisaari, “Fine root longevity and below- and aboveground litter production in a boreal Betula pendula forest,” For. Ecol. Manage. 431, 17–25 (2019). https://doi.org/10.1016/j.foreco.2018.02.039

    Article  Google Scholar 

  48. S. Gauthier, P. Bernier, T. Kuuluvainen, A. Z. Shvidenko, and D. G. Schepaschenko, “Boreal forest health and global change,” Science 349 (6250), 819–822 (2015).

    Article  Google Scholar 

  49. W. S. Gordon and R. B. Jackson, “Nutrient concentrations in fine roots,” Ecology 81 (1), 275–280 (2000). https://doi.org/10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2

    Article  Google Scholar 

  50. R. N. Green, R. L. Trowbridge, and K. Klinka, “Towards a taxonomic classification of humus forms: third approximation,” Sci. Silvica, No. 9, (1997).

  51. P. S. Homann, R. B. McKane, and P. Sollins, “Belowground processes in forest-ecosystem biogeochemical simulation models,” For. Ecol. Manage. 138, 3–18 (2000). https://doi.org/10.1016/S0378-1127(00)00408-4

    Article  Google Scholar 

  52. H.-P. Kahle, T. Karjalainen, A. Schuck, G. Ågren, S. Kellomäki, K. Mellert, J. Prietzel, K. E. Rehfuess, and H. Spiecker, Causes and Consequences of Forest Growth Trends in Europe: Results of the RECOGNTION Project, EFI Research Report 21 (Brill, Leiden, 2008).

    Book  Google Scholar 

  53. O. Kalinina, O. Chertov, P. Frolov, S. Goryachkin, P. Kuner, J. Küper, V. Lopes de Gerenyu, I. Kurganova, D. Lyuri, A. Rusakov, Y. Kuzyakov, and L. Giani, “Alteration process during the post-agricultural restoration of Luvisols of the temperate broad-leaved forest in Russia,” Catena 171, 602–612 (2018). https://doi.org/10.1016/j.catena.2018.08.004

    Article  Google Scholar 

  54. A. Komarov, O. Chertov, S. Bykhovets, C. Shaw, M. Nadporozhskaya, P. Frolov, M. Shashkov, V. Shanin, P. Grabarnik, I. Priputina, and E. Zubkova, “Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing,” Ecol. Model. 345, 113–124 (2017). https://doi.org/10.1016/j.ecolmodel.2016.08.007

    Article  Google Scholar 

  55. M. Lamers, J. Ingwersen, and T. Streck, “Modeling N2O emission from a forest upland soil: a procedure for an automatic calibration of the biogeochemical model Forest-DNDC,” Ecol. Model. 205, 52–58 (2007). https://doi.org/10.1016/j.ecolmodel.2007.02.007

    Article  Google Scholar 

  56. A. A. Larionova, A. M. Yermolayev, S. A. Blagodatsky, L. N. Rozanova, I. V. Yevdokimov, and D. B. Orlinsky, “Soil respiration and carbon balance of gray forest soils as affected by land use,” Biol. Fertil. Soils 27, 251–257 (1998). https://doi.org/10.1007/s003740050429

    Article  Google Scholar 

  57. A. A. Larionova, L. N. Rozanova, I. V. Yevdokimov, A. M. Yermolayev, I. N. Kurganova, and S. A. Blagodatsky, “Land-use change and management effects on carbon sequestration in soils of Russia’s south taiga zone,” Tellus B 55 (2), 331–337 (2003). https://doi.org/10.3402/tellusb.v55i2.16718

    Article  Google Scholar 

  58. M. Lindner, J. B. Fitzgerald, N. E. Zimmermann, C. Reyer, S. Delzon, E. van der Maaten, M.-J. Schelhaas, P. Lasch, J. Eggers, M. van der Maaten-Theunissen, F. Suckow, A. Psomas, B. Poulter, and M. Hanewinkel, “Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?” J. Environ. Manage. 146, 69–83 (2014). https://doi.org/10.1016/j.jenvman.2014.07.030

    Article  Google Scholar 

  59. T. Linkosalo, P. Kolari, and J. Pumpanen, “New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model,” Ecol. Model. 263, 109–118 (2013). https://doi.org/10.1016/j.ecolmodel.2013.04.026

    Article  Google Scholar 

  60. J. Liski, T. Palosuo, M. Peltoniemi, and R. Sievänen, “Carbon and decomposition model Yasso for forest soils,” Ecol. Model. 189, 168–182 (2005). https://doi.org/10.1016/j.ecolmodel.2005.03.005

    Article  Google Scholar 

  61. S. Manzoni and A. Porporato, “Soil carbon and nitrogen mineralization: theory and models across scales,” Soil Biol. Biochem. 41, 1355–1379 (2009). https://doi.org/10.1016/j.soilb.2009.02.031

  62. C. Mulder, F. S. Ahrestani, Bahn M., D. A. Bohan, M. Bonkowski, B. S. Griffithsk, R. A. Guicharnaud, J. Kattge, P. H. Krogh, S. Lavorel, O. T. Lewis, G. Mancinelli, S. Naeemkk, J. Peñuelas, H. Poorter, et al., “Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks,” Adv. Ecol. Res. 49, 169–175 (2013). https://doi.org/10.1016/B978-0-12-420002-9.00002-0

    Article  Google Scholar 

  63. M. A. Nadporozhskaya, G. M. J. Mohren, O. G. Chertov, A. S. Komarov, and A. V. Mikhailov, “Soil organic matter dynamics at primary and second forest succession on sandy soils in the Netherlands: an application of soil organic matter model ROMUL,” Ecol. Model. 190, 399–418 (2006). https://doi.org/10.1016/j.ecolmodel.2005.03.025

    Article  Google Scholar 

  64. N. S. Panikov and M. V. Sizova, “A kinetic method for estimating the biomass of microbial functional groups in soil,” J. Microbiol. Methods 24, 219–230 (1996). https://doi.org/10.1016/0167-7012(95)00074-7

    Article  Google Scholar 

  65. W. J. Parton, S. J. Del Grosso, A. F. Plante, E. C. Adair, and S. M. Luz, “Modeling the dynamics of soil organic matter and nutrient cycling,” in Soil Microbiology, Ecology and Biochemistry, Ed. by E.A. Paul (Academic, London, 2015), pp. 505–537.

    Google Scholar 

  66. I. M. Ryzhova, “The analysis of stability and bifurcation of carbon turnover in soil-vegetation systems on the basis of the nonlinear model,” Syst. Anal. Model. Simul. 12, 139–145 (1993.

    Google Scholar 

  67. K. E. Saxton, W. J. Rawls, J. S. Romberger, and R. I. Papendick, “Estimating generalized soil water characteristics from texture,” Soil Sci. Soc. Am. J. 50 (4), 1031–1036 (1986). https://doi.org/10.2136/sssaj1986.03615995005000040039x

    Article  Google Scholar 

  68. Modeling Carbon and Nitrogen Dynamics for Soil Management, Ed. by M. J. Shaffer, L. Ma, and S. Hansen (CRC Press, Boca Raton, FL, 2001).

    Google Scholar 

  69. E. Shorokhova and E. Kapitsa, “Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests,” For. Ecol. Manage. 315, 173–184 (2014). https://doi.org/10.1016/j.foreco.2013.12.025

    Article  Google Scholar 

  70. P. Smith, J. U. Smith, D. S. Powlson, W. B. McGill, J. R. M. Arah, O. G. Chertov, et al., “A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments,” Geoderma 81, 153–225 (1997). https://doi.org/10.1016/S0016-7061(97)00087-6

    Article  Google Scholar 

  71. J. U. Smith, P. Smith, R. Monaghan, and J. MacDonald, “When is a measured soil organic matter fraction equivalent to a model pool?” Eur. J. Soil Sci. 53, 405–416 (2002). https://doi.org/10.1046/j.1365-2389.2002.00458.x

    Article  Google Scholar 

  72. P. Smith, J.-F. Soussana, D. Angers, L. Schipper, C. Chenu, D. P. Rasse, N. H. Batjes, et al., “How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal,” Global Change Biol. 26 (1), 219–241 (2020). https://doi.org/10.1111/gcb.14815

    Article  Google Scholar 

  73. F. Stange, K. Butterbach-Bahl, H. Papen, S. Zechmeister-Boltenstern, C. S. Li, and J. Aber, “A process-oriented model of N2O and NO emissions from forest soils. 2. Sensitivity analysis and validation,” J. Geophys. Res.: Atmos. 105 (4), 4385–4398 (2000). https://doi.org/10.1029/1999JD900948

    Article  Google Scholar 

  74. Y. M. Svirezhev and A. M. Tarko, “The global role of the biosphere in the stabilization of atmospheric CO2 and temperature,” in Carbon Cycle Modelling, Ed. by B. Bolin (Wiley, New York, 1981), pp. 355–364.

    Google Scholar 

  75. K. Sun, M. L. McCormack, L. Li, Z. Ma, and D. Guo, “Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem,” Sci. Rep. 6, 19698 (2015). https://doi.org/10.1038/srep19698

    Article  Google Scholar 

  76. P. Wallman, M. Svensson, H. Sverdrup, and S. Belyazid, “ForSAFE—an integrated process-oriented forest model for long-term sustainability assessments,” For. Ecol. Manage. 207, 19–36 (2005). https://doi.org/10.1016/j.foreco.2004.10.016

    Article  Google Scholar 

  77. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015, World Soil Resources Reports No. 106 (FAO, Rome, 2015).

  78. V. V. Zelenev, A. H. C. van Bruggen, and A. M. Semenov, “BACWAVE”, a spatial–temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil,” Microb. Ecol. 40, 260–272 (2000). https://doi.org/10.1007/s002480000029

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This article is our tribute to the memory of Professor A.S. Komarov, who made the main contribution to the elaboration of the family of ROMUL models in cooperation with O.G. Chertov. We also remember with gratitude A.A. Larionova, whose experimental research on the mineralization of plant debris was used to enlarge the range of soil-climatic conditions for the application of these models. We are grateful to all our colleagues, who participated in the elaboration and parameterization of the models at various stages.

Funding

The research on testing the Romul_Hum model was performed according to the State task of the Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences (topic of the Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, no. AAAA-A18-118013190176-2). The verification results of the ROMUL model were obtained according to the project of the Basic Research Program of the Presidium of the Russian Academy of Sciences no. 20 (subprogram no. 20.3). The participation of Professor O.G. Chertov in this research was implemented according to the international cooperation of the Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Priputina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priputina, I.V., Bykhovets, S.S., Frolov, P.V. et al. Application of Mathematical Models ROMUL and Romul_Hum for Estimating CO2 Emission and Dynamics of Organic Matter in Albic Luvisol under Deciduous Forest in the South of Moscow Oblast. Eurasian Soil Sc. 53, 1480–1491 (2020). https://doi.org/10.1134/S1064229320100154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320100154

Keywords:

Navigation