Skip to main content
Log in

Comparative Study of Statistical, Numerical and Machine Learning-based Pedotransfer Functions of Water Retention Curve with Particle Size Distribution Data

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The water retention curve (WRC) describes the nonlinear relation of soil water content (SWC) and matric potential. Since direct measurement of SWC and matric potential is difficult and time consuming, indirect approaches including statistical, numerical, and pattern recognition-based pedo-transfer functions (PTFs) that relate basic soil properties to the WRC have been developed during the last few decades. Although several studies reporting the performance of these models can be found in literature, it seems that an extensive investigation which compares the available models and introduces a reliable method to soil hydrologists can be useful. Therefore, in this study, the performance of multiple linear regressions (MLR) models, scaled numerical models and machine learning methods including artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) are compared using 98 UNSODA codes with various soil textures to estimate WRC. Results showed that regardless of the soil texture, ANN (RMSE = 0.029) predicts the WRC more accurately than ANFIS (RMSE = 0.035), scaled model (RMSE = 0.060) and MLR (RMSE = 0.071), respectively. Considering the soil texture, ANFIS performance is the best in the moderate and fine textured soils, while scaled numerical model predicts with acceptable performance in sandy soils. WRC prediction using easily available soil characteristics particularly when there is a lack of data, shows that newly developed machine learning methods are capable of predicting WRC considerably accurate for sustainable water flow and solute transport management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. C. Resurreccion, P. Moldrup, M. Tuller, T. Ferré, K. Kawamoto, T. Komatsu, and L. W. de Jonge, “Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents,” Water Resour. Res. 47, W06522 (2011). https://doi.org/10.1029/2010WR010229

    Article  Google Scholar 

  2. A. D. Nemes, M. Schaap, F. Leij, and J. Wösten, “Description of the unsaturated soil hydraulic database UNSOD-A version 2.0,” J. Hydrol. 251, 151–162 (2001). https://doi.org/10.1016/S0022-1694(01)00465-6

    Article  Google Scholar 

  3. A. Elshorbagy and K. Parasuraman, “On the relevance of using artificial neural networks for estimating soil moisture content,” J. Hydrol. 362, 1–18 (2008). https://doi.org/10.1016/j.jhydrol.2008.08.01

    Article  Google Scholar 

  4. A. Erofeev, D. Orlov, A. Ryzhov, and D. Koroteev, “Prediction of porosity and permeability alteration based on machine learning algorithms,” Transp. Porous Med. 128, 677–700 (2019).

    Article  Google Scholar 

  5. A. Garg, A. Garg, W.-H. Zhou, K. Tai, and M. Deo, “A new simulation approach of genetic programming in modelling of soil water retention property of unsaturated soil,” Eng. Comput. 32, 914–930 (2015). https://doi.org/10.1108/EC-05-2014-0110

    Article  Google Scholar 

  6. A. Haghverdi, W. Cornelis, and B. Ghahraman, “A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data,” J. Hydrol. 442, 46–54 (2012). https://doi.org/10.1016/j.jhydrol.2012.03.036

    Article  Google Scholar 

  7. A. Hashemi, K. Asefpour Vakilian, J. Khazaei, and J. Massah, “An artificial neural network modeling for force control system of a robotic pruning machine,” J. Inf. Org. Sci. 38, 35–41 (2014).

    Google Scholar 

  8. A. H. Alavi, A.H. Gandomi, A. Mollahassani, A. A. Heshmati, and A. Rashed, “Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks,” J. Plant Nutr. Soil Sci. 173, 368–379 (2010). https://doi.org/10.1002/jpln.200800233

    Article  Google Scholar 

  9. A. Jafarzadeh, M. Pal, M. Servati, M. FazeliFard, and M. Ghorbani, “Comparative analysis of support vector machine and artificial neural network models for soil cation exchange capacity prediction,” Int. J. Environ. Sci. Technol. 13, 87–96 (2016). https://doi.org/10.1007/s13762-015-0856-4

    Article  Google Scholar 

  10. A. Kamari, A. H. Mohammadi, M. Lee, and A. Bahadori, “Decline curve based models for predicting natural gas well performance,” Petroleum 3, 242–248 (2017). https://doi.org/10.1016/j.petlm.2016.06.006

    Article  Google Scholar 

  11. A. Keshavarzi, F. Sarmadian, M. Sadeghnejad, and P. Pezeshki, “Developing pedotransfer functions for estimating some soil properties using artificial neural network and multivariate regression approaches,” Proenvironment 3, 322–330 (2010).

    Google Scholar 

  12. A. Nemes, M. Schaap, and J. Wösten, “Functional evaluation of pedotransfer functions derived from different scales of data collection,” Soil Sci. Soc. Am. J. 67, 1093–1102 (2003). https://doi.org/10.2136/sssaj2003.1093

    Article  Google Scholar 

  13. C. Antinoro, V. Bagarello, V. Ferro, G. Giordano, and M. Iovino, “A simplified approach to estimate water retention for Sicilian soils by the Arya–Paris model,” Geoderma 213, 226–234 (2014). https://doi.org/10.1016/j.geoderma.2013.08.004

    Article  Google Scholar 

  14. C. T. Silveira, C. Oka-Fiori, L. J. C. Santos, A. E. Sirtoli, C. R. Silva, and M. F. Botelho, “Soil prediction using artificial neural networks and topographic attributes,” Geoderma 195, 165–172 (2013). https://doi.org/10.1016/j.geoderma.2012.11.016

    Article  Google Scholar 

  15. D. K. Jensen, M. Tuller, L. W. de Jonge, E. Arthur, and P. Moldrup, “A new two-stage approach to predicting the soil water characteristic from saturation to oven-dryness,” J. Hydrol. 521, 498–507 (2015). https://doi.org/10.1016/j.jhydrol.2014.12.018

    Article  Google Scholar 

  16. D. Karup, P. Moldrup, M. Tuller, E. Arthur, and L. Jonge, “Prediction of the soil water retention curve for structured soil from saturation to oven dryness,” Eur. J. Soil Sci. 68, 57–65 (2017). https://doi.org/10.1111/ejss.12401

    Article  Google Scholar 

  17. D. Li, G. Gao, M. Shao, and B. Fu, “Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China,” J. Hydrol. 538, 539–550 (2016).https://doi.org/10.1016/j.jhydrol.2016.04.046

    Article  Google Scholar 

  18. D. Zhao, W. Ni, and Q. Zhu, “A framework of neural networks based consensus control for multiple robotic manipulators,” Neurocomputing 140, 8–18 (2014).https://doi.org/10.1016/j.neucom.2014.03.041

    Article  Google Scholar 

  19. E. Arthur, M. Tuller, P. Moldrup, D. K. Jensen, and L. W. de Jonge, “Prediction of clay content from water vapor sorption isotherms considering hysteresis and soil organic matter content,” Eur. J. Soil Sci. 66, 206–217 (2015). https://doi.org/10.1111/ejss.12191

    Article  Google Scholar 

  20. E. Olyaie, H. Banejad, K.-W. Chau, and A. M. Melesse, “A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States,” Environ. Monit. Assess. 187, 189 (2015). https://doi.org/10.1007/s10661-015-4381-1

    Article  Google Scholar 

  21. F. H. Fashi, “Evaluation of adaptive neural-based fuzzy inference system approach for estimating saturated soil water content,” Model. Earth Syst. Environ. 2, 197 (2016). https://doi.org/10.1007/s40808-016-0255-y

    Article  Google Scholar 

  22. F. Karandish and J. Šimůnek, “A comparison of numerical and machine-learning modeling of soil water content with limited input data,” J. Hydrol. 543, 892–909 (2016). https://doi.org/10.1016/j.jhydrol.2016.11.007

    Article  Google Scholar 

  23. F. Meskini-Vishkaee, M. H. Mohammadi, and M. Vanclooster, “Predicting the soil moisture retention curve, from soil particle size distribution and bulk density data using a packing density scaling factor,” Hydrol. Earth Syst. Sci. 18, 4053–4063 (2014). https://doi.org/10.5194/hess-18-4053-2014

    Article  Google Scholar 

  24. H. Ghorbani, H. Kashi, N. Hafezi Moghadas, and S. Emamgholizadeh, “Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province, Iran,” Commun. Soil Sci. Plan. 46, 763–780 (2015). https://doi.org/10.1080/00103624.2015.1006367

    Article  Google Scholar 

  25. H. Jiang and W. R. Cotton, “Soil moisture estimation using an artificial neural network: a feasibility study,” Can. J. Remote Sens. 30, 827–839 (2004). https://doi.org/10.5589/m04-041

    Article  Google Scholar 

  26. H. Khodaverdiloo, M. Homaee, M. T. van Genuchten, and S. G. Dashtaki, “Deriving and validating pedotransfer functions for some calcareous soils,” J. Hydrol. 399, 93–99 (2011). https://doi.org/10.1016/j.jhydrol.2010.12.040

    Article  Google Scholar 

  27. H. Puhlmann and K. von Wilpert, “Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils,” J. Plant Nutr. Soil Sci. 175, 221–235 (2012). https://doi.org/10.1002/jpln.201100139

    Article  Google Scholar 

  28. H. Tabari, O. Kisi, A. Ezani, and P. H. Talaee, “SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment,” J. Hydrol. 444, 78–89 (2012). https://doi.org/10.1016/j.jhydrol.2012.04.007

    Article  Google Scholar 

  29. H. Vereecken, A. Schnepf, J. W. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M. H. Young, W. Amelung, M. Aitkenhead, and S. D. Allison, “Modeling soil processes: review, key challenges, and new perspectives,” Vadose Zone J. 15, 1–57 (2016). https://doi.org/10.2136/vzj2015.09.0131

    Article  Google Scholar 

  30. H. Vereecken, M. Weynants, M. Javaux, Y. Pachepsky, M. Schaap, and M. T. Genuchten, “Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review,” Vadose Zone J. 9, 795–820 (2010). https://doi.org/10.2136/vzj2010.0045

    Article  Google Scholar 

  31. H. Vereecken, J. Maes, J. Feyen, and P. Darius, “Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content,” Soil Sci. 148, 389-403 (1989).

    Article  Google Scholar 

  32. I. Yilmaz and O. Kaynar, “Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils,” Exp. Syst. Appl. 38, 5958–5966 (2011). https://doi.org/10.1016/j.eswa.2010.11.027

    Article  Google Scholar 

  33. J. Deng, X. Chen, Z. Du, and Y. Zhang, “Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China,” Water Resour. Manage. 25, 2823–2836 (2011). https://doi.org/10.1007/s11269-011-9840-z

    Article  Google Scholar 

  34. J. Seyedmohammadi, L. Esmaeelnejad, and H. Ramezanpour, “Determination of a suitable model for prediction of soil cation exchange capacity,” Model. Earth Syst. Environ. 2, 156 (2016). https://doi.org/10.1007/s40808-016-0217-4

    Article  Google Scholar 

  35. J. Si, Q. Feng, X. Wen, H. Xi, T. Yu, W. Li, and C. Zhao, “Modeling soil water content in extreme arid area using an adaptive neuro-fuzzy inference system,” J. Hydrol. 527, 679–687 (2015). https://doi.org/10.1016/j.jhydrol.2015.05.034

    Article  Google Scholar 

  36. J. Wäldchen, I. Schöning, M. Mund, M. Schrumpf, S. Bock, N. Herold, K. U. Totsche, and E. D. Schulze, “Estimation of clay content from easily measurable water content of air dried soil,” J. Plant Nutr. Soil Sci. 175, 367–376 (2012). https://doi.org/10.1002/jpln.201100066

    Article  Google Scholar 

  37. K. Asefpour Vakilian and J. Massah, “An artificial neural network approach to identify fungal diseases of cucumber (Cucumis sativus L.) plants using digital image processing,” Arch. Phytopathol. Pflanzenschutz 46, 1580–1588 (2013). https://doi.org/10.1080/03235408.2013.772321

    Article  Google Scholar 

  38. K. Christiaens and J. Feyen, “Analysis of uncertainties associated with different methods to determine soil hydraulic properties and their propagation in the distributed hydrological MIKE SHE model,” J. Hydrol. 246, 63–81 (2001). https://doi.org/10.1016/S0022-1694(01)00345-6

    Article  Google Scholar 

  39. K. Yetilmezsoy, M. Fingas, and B. Fieldhouse, An adaptive neuro-fuzzy approach for modeling of water-in-oil emulsion formation,” Colloid. Surf. A 389, 50–62 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.051

    Article  Google Scholar 

  40. L. Baker and D. Ellison, “Optimization of pedotransfer functions using an artificial neural network ensemble method,” Geoderma 144, 212–224 (2008). https://doi.org/10.1016/j.geoderma.2007.11.016

    Article  Google Scholar 

  41. M. A. Joe and P. R. Prasanna, “Simulation of soil water retention curve using artificial neural networks with pseudocontinuous pedotransfer functions,” Int. J. Appl. Eng. Res. 11, 4700–4706 (2016).

    Google Scholar 

  42. M. Aqil, I. Kita, A. Yano, and S. Nishiyama, “A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff,” J. Hydrol. 337, 22–34 (2007). https://doi.org/10.1016/j.jhydrol.2007.01.013

    Article  Google Scholar 

  43. M. Behnia, H. A. Valani, M. Bameri, B. Jabalbarezi, and H. E. Damaneh, “Potential assessment of ANNs and adaptive neuro fuzzy inference systems (ANFIS) for simulating soil temperature at different soil profile depths,” Int. J. Adv. Biol. Biomed. Res. 5, 52–59 (2017), https://doi.org/10.18869/IJABBR.2017.419

    Article  Google Scholar 

  44. M. H. Mohammadi and M. Vanclooster, “Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model,” Vadose Zone J. 10, 594–602 (2011). https://doi.org/10.2136/vzj2010.0080

    Article  Google Scholar 

  45. M. Mohammadi and F. Meskini-Vishkaee, “Predicting soil moisture characteristic curves from continuous particle-size distribution data,” Pedosphere 23, 70–80 (2013). https://doi.org/10.1016/S1002-0160(12)60081-2

    Article  Google Scholar 

  46. M. Hosseini, S. R. Agereh, Y. Khaledian, H. J. Zoghalchali, E. C. Brevik, and S. A. R. Movahedi Naeini, “Comparison of multiple statistical techniques to predict soil phosphorus,” Appl. Soil Ecol. 114, 123–131 (2017). https://doi.org/10.1016/j.apsoil.2017.02.011

    Article  Google Scholar 

  47. M. Mukhlisin, A. El-Shafie, and M. R. Taha, “Regularized versus non-regularized neural network model for prediction of saturated soil-water content on weathered granite soil formation,” Neural Comput. Appl. 21, 543–553 (2012). https://doi.org/10.1007/s00521-011-0545

    Article  Google Scholar 

  48. M. N. Wuddivira, D. A. Robinson, I. Lebron, L. Bréchet, M. Atwell, S. de Caires, M. Oatham, S. B. Jones, H. Abdu, and A. K. Verma, “Estimation of soil clay content from hygroscopic water content measurements,” Soil Sci. Soc. Am. J. 76, 1529–1535 (2012). https://doi.org/10.2136/sssaj2012.0034

    Article  Google Scholar 

  49. M. T. Dastorani, A. Moghadamnia, J. Piri, and M. Rico-Ramirez, “Application of ANN and ANFIS models for reconstructing missing flow data,” Environ. Monit. Assess. 166, 421–434 (2010). https://doi.org/10.1007/10661-009-1012-8

    Article  Google Scholar 

  50. M. T. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Article  Google Scholar 

  51. M. Weynants, H. Vereecken, and M. Javaux, “Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model,” Vadose Zone J. 8, 86–95 (2009). https://doi.org/10.2136/vzj2008.0062

    Article  Google Scholar 

  52. N. K. Twarakavi, J. Šimůnek, and M. Schaap, “Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines,” Soil Sci. Soc. Am. J. 73, 1443–1452 (2009). https://doi.org/10.2136/sssaj2008.0021

    Article  Google Scholar 

  53. N. Talpur, M. N. M. Salleh, and K. Hussain, “An investigation of membership functions on performance of ANFIS for solving classification problems,” IOP Conf. Ser.: Mater. Sci. 226, 012103 (2017). https://doi.org/10.1088/1757-899X/226/1/012103

    Article  Google Scholar 

  54. P. C. Nayak, K. Sudheer, D. Rangan, and K. Ramasastri, “A neuro-fuzzy computing technique for modeling hydrological time series,” J. Hydrol. 291, 52–66 (2004). https://doi.org/10.1016/j.jhydrol.2003.12.010

    Article  Google Scholar 

  55. P. Tempel, N. Batjes, and V. van Engelen, IGBP-DIS Soil Data Set for Pedotransfer Function Development, ISR-IC working paper 96/05 (International Soil Reference and Information Centre, Wageningen, 1996).

  56. P. Zou, J. Yang, J. Fu, G. Liu, and D. Li, “Artificial neural network and time series models for predicting soil salt and water content,” Agric. Water Manage. 97, 2009–2019 (2010). https://doi.org/10.1016/j.agwat.2010.02.01

    Article  Google Scholar 

  57. S. G. Dashtaki, M. Homaee, and H. Khodaverdiloo, “Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data,” Soil Use Manage. 26, 68–74 (2010). https://doi.org/10.1111/j.1475-2743.2009.00254.x

    Article  Google Scholar 

  58. S. I. Hwang and S. I. Choi, “Use of a lognormal distribution model for estimating soil water retention curves from particle-size distribution data,” J. Hydrol. 323, 325–334 (2006). https://doi.org/10.1016/j.jhydrol.2005.09.005

    Article  Google Scholar 

  59. S. Uzuner and D. Cekmecelioglu, “Comparison of artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models in simulating polygalacturonase production,” BioResources 11, 8676–8685 (2016).

    Article  Google Scholar 

  60. S. Zacharias and G. Wessolek, “Excluding organic matter content from pedotransfer predictors of soil water retention,” Soil Sci. Soc. Am. J. 71, 43–50 (2007). https://doi.org/10.2136/sssaj2006.0098

    Article  Google Scholar 

  61. T. Asefa, M. Kemblowski, M. McKee, and A. Khalil, “Multi-time scale stream flow predictions: the support vector machines approach,” J. Hydrol. 318, 7–16 (2006). https://doi.org/10.1016/j.jhydrol.2005.06.001

    Article  Google Scholar 

  62. T. Chan and R. Govindaraju, “Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems,” Vadose Zone J. 3, 1443–1454 (2004). https://doi.org/10.2113/3.4.1443

    Article  Google Scholar 

  63. T. Moreira de Melo and O. C. Pedrollo, “Artificial neural networks for estimating soil water retention curve using fitted and measured data,” Appl. Environ. Soil Sci. 2015, 535216 (2015). https://doi.org/10.1155/2015/535216

    Article  Google Scholar 

  64. V. Balland, J. A. Pollacco, and P. A. Arp, “Modeling soil hydraulic properties for a wide range of soil conditions,” Ecol. Model. 219, 300–316 (2008). https://doi.org/10.1016/j.ecolmodel.2008.07.009

    Article  Google Scholar 

  65. V. Vijayaraghavan, A. Garg, C. H. Wong, K. Tai, and Y. Bhalerao, “Predicting the mechanical characteristics of hydrogen functionalized graphene sheets using artificial neural network approach,” J. Nanostruct. Chem. 3, 83 (2013). https://doi.org/10.1186/2193-8865-3-83

    Article  Google Scholar 

  66. V. Vijayaraghavan, A. Garg, C. Wong, K. Tai, and S. Mahapatra, Measurement of properties of graphene sheets subjected to drilling operation using computer simulation,” Measurement 50, 50–62 (2014). https://doi.org/10.1016/j.measurement.2013.12.028

    Article  Google Scholar 

  67. X. Dai, Z. Huo, and H. Wang, “Simulation for response of crop yield to soil moisture and salinity with artificial neural network,” Field Crop. Res. 121, 441–449 (2011). https://doi.org/10.1016/j.fcr.2011.01.016

    Article  Google Scholar 

  68. Y. Abbasi, B. Ghanbarian-Alavijeh, A. Liaghat, and M. Shorafa, “Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran,” Pedosphere 21, 230–237 (2011). https://doi.org/10.1016/S1002-0160(11)60122-7

    Article  Google Scholar 

  69. Z. Zolfaghari, M. Mosaddeghi, and S. Ayoubi, “ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran,” Soil Use Manage. 31, 142–154 (2015). https://doi.org/10.1111/sum.12167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amanabadi.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanabadi, S., Vazirinia, M., Vereecken, H. et al. Comparative Study of Statistical, Numerical and Machine Learning-based Pedotransfer Functions of Water Retention Curve with Particle Size Distribution Data. Eurasian Soil Sc. 52, 1555–1571 (2019). https://doi.org/10.1134/S106422931930001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931930001X

Keywords:

Navigation