Skip to main content
Log in

Modeling of the evolution of steppe chernozems and development of the method of pedogenetic chronology

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Geoarchaeological methods were used to study chronosequences of surface soils in the steppe zone and to trace soil evolution during the Late Holocene in northwestern Crimea. It was found that the morphological and functional “maturity” of the humus horizons in steppe chernozems of the Late Holocene was reached in about 1600–1800 yrs. After this, their development decelerated irreversibly. The maximum concentration of trace elements accumulated in these horizons in the course of pedogenesis was reached in 1400 yrs. A new method of pedogenetic chronology based on the model chronofunction of the development of irreversible results of pedogenesis over time is suggested. Original pedochronological data and growth functions—the most suitable models for simulating pedogenesis over the past three thousand years—suggest that the development of morphological features of soil as an organomineral natural body follows growth patterns established for biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Aleksandrovskii, Soil Evolution in the East European Plain in the Holocene (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. A. L. Aleksandrovskii and E. I. Aleksandrovskaya, Soil Evolution and the Geographical Environment (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  3. F. N. Lisetskii, P. V. Goleusov, O. A. Chepelev, et al., Pat. Appl. No. 2010620434, 2010.

  4. V. R. Volobuev, Introduction to the Energy of Soil-Forming Processes (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  5. A. N. Gennadiev, Soils and Time: Models of Development (Moscow State University, Moscow, 1990) [in Russian].

    Google Scholar 

  6. V. A. Gorodtsov, “The culture of the Bronze Age in Central Russia,” in The Report of Museum of History, 1914 (Moscow, 1916) [in Russian].

    Google Scholar 

  7. V. A. Demkin, T. S. Demkina, T. E. Khomutova, and M. V. El’tsov, “Soil evolution and climate dynamics in dry steppes of the Privolzhskaya Upland during the last 3500 years,” Eurasian Soil Sci. 45 (12), 1095–1109 (2012).

    Article  Google Scholar 

  8. V. V. Dokuchaev, Selected Works (Sel’khozgiz, Moscow, 1949), Vol. 1, p. 390.

    Google Scholar 

  9. V. S. Zhekulin, Historical Geography: Subject and Methods, Ed. by S. B. Lavrov (Nauka, Leningrad, 1982) [in Russian].

  10. S. A. Zakharov, Lectures on Soil Science (Gosizdat, Moscow, 1927) [in Russian].

    Google Scholar 

  11. V. P. Zolotun, Doctoral Dissertation in Agriculture (Kiev, 1974).

    Google Scholar 

  12. I. V. Ivanov, Evolution of Steppe Soils in the Holocene (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  13. I. V. Ivanov, O. S. Khokhlova, V. V. Galitskii, O. A. Chichagova, and E. P. Zazovskaya, “Radiocarbon pollution and self-purification of humus in chernozems of the East-European plain in 1900–2008,” Eurasian Soil Sci. 45 (8), 802–810 (2012).

    Article  Google Scholar 

  14. F. N. Lisetskii, “Soil reproduction in steppe ecosystems of different ages,” Contemp. Probl. Ecol. 5 (6), 580–588 (2012). doi 10.1134/S1995425512060108

    Article  Google Scholar 

  15. F. N. Lisetskii, P. V. Goleusov, and O. A. Chepelev, “The development of chernozems on the Dniester-Prut interfluve in the Holocene,” Eurasian Soil Sci. 46 (5), 491–504 (2013). doi 10.7868/S0032180X13050109

    Article  Google Scholar 

  16. F. N. Lisetskii and E. I. Ergina, “Soil development on the Crimean Peninsula in the Late Holocene,” Eurasian Soil Sci. 43 (6), 601–613 (2010). doi 10.1134/S1064229310060013

    Article  Google Scholar 

  17. Principles of Rational Use of Soil-Climatic Conditions in Agriculture (Kolos, Moscow, 1972) [in Russian].

  18. F. Ruprecht, Geobotanical Studies of Chernozem (St. Petersburg, 1866) [in Russian].

    Google Scholar 

  19. N. E. Ryabogina and A. S. Yakimov, “Palynological and paleosol studies on archeological monuments: analysis of possibilities and study methodology,” Vestn. Arkheol., Antropol., Etnogr., No. 2, 186–200 (2010).

    Google Scholar 

  20. I. A. Sokolov and V. O. Targulian, “Structural and functional approach to soils: soil–memory and soil–moment,” in Mathematical Modeling in Ecology (Nauka, Moscow, 1976), pp. 17–34.

    Google Scholar 

  21. Physical and Geographic Zonation of Ukrainian Soviet Republic, Ed. by V. P. Popov, A. M. Marinich, and A. I. Lan’ko (Kiev State University, Kiev, 1968) [in Russian].

  22. I. V. Florinsky, “The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication),” Eurasian Soil Sci. 45 (4), 445–451 (2012).

    Article  Google Scholar 

  23. E. V. Shein, A. M. Rusanov, E. Y. Milanovskii, D. D. Khaidapova, and E. I. Nikolaeva, “Mathematical models of some soil characteristics: substantiation, analysis, and using features of model parameters,” Eurasian Soil Sci. 46 (5), 541–547 (2013).

    Article  Google Scholar 

  24. A. L. Aleksandrovskii, A. A. Gol’eva, and V. S. Gunova, “Reconstruction of paleolandscape conditions of the early Scythian soils in the Stavropol region,” Eurasian Soil Sci. 30 (5), 461–471 (1997).

    Google Scholar 

  25. D. C. Bain, A. Mellor, M. S. E. Robertson-Rintoul, et al., Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland,” Geoderma 57 (3), 275–293 (1992).

    Article  Google Scholar 

  26. L. R. Barrett, “A strand plain soil development sequence in Northern Michigan, USA,” Catena 44 (3), 163–186 (2001). doi 10.1016/S0341-8162(00)00170-3

    Article  Google Scholar 

  27. P. W. Birkeland, “Holocene soil chronofunctions. Southern Alps, New Zealand,” Geoderma 34 (2), 115–134 (1984).

    Article  Google Scholar 

  28. J. G. Bockheim, “Soil development rates in the Transantarctic Mountains,” Geoderma 47 (1/2), 59–77 (1990).

    Article  Google Scholar 

  29. J. G. Bockheim, “Solution and use of chronofunctions in studying soil development,” Geoderma 24 (1), 71–85 (1980).

    Article  Google Scholar 

  30. J. G. Bockheim and A. N. Gennadiyev, “Soil-factorial models and earth-system science: a review,” Geoderma 159 (3), 243–251 (2010). doi 10.1016/jgeoderma.2010.09.005

    Article  Google Scholar 

  31. V. A. Demkin, “Buried soils of defense lines of ancient Russia and the problems of ancient and recent history of soil formation,” Eurasian Soil Sci. 32 (10), 1094–1104 (1999).

    Google Scholar 

  32. Dominant Soils of Ukraine, Scale 1: 2 500 000 (International Soil Reference and Information Centre, Wageningen, 1998).

  33. S. Dreibrodt, O. Nelle, I. Lüjens, A. Mitusov, I. Clausen, and H. Bork, “Investigations on buried soils and colluvial layers around bronze age burial mounds at Bornhöved (northern Germany): an approach to test the hypothesis of “landscape openness” by the incidence of colluviation,” Holocene 19 (3), 487–497 (2009). doi 10.1177/0959683608101397

    Article  Google Scholar 

  34. P. F. Fisher, “Pedogenesis within the archaeological landscape at south lodge camp, Wiltshire, England,” Geoderma 29 (2), 93–105 (1983).

    Article  Google Scholar 

  35. P. V. Goleusov and F. N. Lisetskii, “Soil development in anthropogenically disturbed forest-steppe landscapes,” Eurasian Soil Sci. 41 (13), 1480–1486 (2008). doi 10.1134/S1064229308130188

    Article  Google Scholar 

  36. M. A. Griffith, “A pedological investigation of an archaeological site in Ontario, Canada, I. An examination of the soils in and adjacent to a former village,” Geoderma 24 (4), 327–336 (1980).

    Article  Google Scholar 

  37. J. W. Harden, “Soil development on stable landforms and implications for landscape studies,” Geomorphology 3 (3–4), 391–398 (1990).

    Article  Google Scholar 

  38. A. M. Heimsath, W. E. Dietrich, K. Nishiizumi, et al., “The soil production function and landscape equilibrium,” Nature 388, 358–361 (1997).

    Article  Google Scholar 

  39. R. J. Huggett, “Soil chronosequences, soil development, and soil evolution: a critical review,” Catena 32 (3), 155–172 (1998).

    Article  Google Scholar 

  40. I. V. Ivanov and E. D. Tabanakova, “Changes in the thickness of humus horizons and the Holocene evolution of East European chernozems (mechanisms, factors, and regularities),” Eurasian Soil Sci. 36 (9), 917–930 (2003).

    Google Scholar 

  41. H. Jenny, The Soil Resource. Origin and Behavior (Springer-Verlag, New York, 1980).

    Book  Google Scholar 

  42. H. Kohnke and A. R. Bertrand, Soil Conservation (McGraw-Hill, New York, 1959).

    Google Scholar 

  43. A. N. Kolmogorov, “Confidence limits for an unknown distribution function,” Ann. Math. Stat. 12, 461–463 (1941).

    Article  Google Scholar 

  44. H. Lin, “Three principles of soil change and pedogenesis in time and space,” Soil Sci. Soc. Am. J. 75 (6), 2049–2070 (2011). doi 10.2136/sssaj2011.0130

    Article  Google Scholar 

  45. F. N. Lisetskii, V. F. Stolba, E. I. Ergina, et al., “Postagrogenic evolution of soils in ancient Greek land use areas in the Herakleian Peninsula, southwestern Crimea,” Holocene 23 (4), 504–514 (2013). doi 10.1177/0959683612463098

    Article  Google Scholar 

  46. F. N. Lisetskii, V. F. Stolba, and O. A. Marinina, “Indicators of agricultural soil genesis under varying conditions of land use,” Geoderma 239–240, 304–316 (2015). doi 10.1016/jgeoderma.2014.11.006

  47. G. Liu, P. Liu, Q. Zhang, et al., “Construction of heilu soil chronofunction in Luochuan, China,” in International Conference on Remote Sensing, Environment and Transportation Engineering (Nanjing, China, 2011), pp. 188–191. doi 10.1109/RSETE.2011.5964247

    Google Scholar 

  48. A. V. Mitusov, O. E. Mitusova, K. Pustovoytov, et al., “Palaeoclimatic indicators in soils buried under archaeological monuments in the Eurasian steppe: a review,” Holocene 19 (8), 1153–1160 (2009). doi 10.1177/0959683609345076

    Article  Google Scholar 

  49. Munsell Color, Munsell Soil Color Charts (Baltimore, MD, 1990).

    Google Scholar 

  50. C. C. Nikiforoff, “Reappraisal of the soil,” Science 129 (3343), 186–196 (1959).

    Article  Google Scholar 

  51. J. D. Phillips, A. V. Turkington, and D. A. Marion, “Weathering and vegetation effects in early stages of soil formation,” Catena 72 (1), 21–28 (2008). doi 10.1016/jcatena.2007.03.020

    Article  Google Scholar 

  52. B. P. Ruxton, “Rates of weathering of Quaternary volcanic ash in Northeast Papera,” in Transactions of the 9th International Congress of Soil Science, Adelaide (Adelaide, Australia, 1968), Vol. 4, pp. 205–213.

    Google Scholar 

  53. R. J. Schaetzl, L. R. Barrett, and J. A. Winkler, “Choosing models for soil chronofunctions and fitting them to data,” Eur. J. Soil Sci. 45 (2), 219–232 (1994).

    Article  Google Scholar 

  54. D. M. Shaw, Interprétation Geochimique des Éléments en Traces dans les Roches Cristallines (Masson, Paris, 1964).

    Google Scholar 

  55. M. W. Sondheim, G. A. Singleton, and L. M. Lavkulich, “Numerical analysis of a chronosequence, including the development of a chronofunction,” Soil Sci. Soc. Am. J. 45 (3), 558–563 (1981).

    Article  Google Scholar 

  56. P. R. Stevens and T. W. Walker, “The chronosequece concept and soil formation,” Quart. Rev. Biol. 45 (4), 333–350 (1970).

    Article  Google Scholar 

  57. V. F. Stolba, “La vie rural en Crimée antique: Panskoe et ses environs,” Étud. Lett. 1–2, 311–364 (2012). doi 10.4000/edl.365

    Article  Google Scholar 

  58. V. F. Stolba and J. Andresen, “Unveiling the hinterland: a new type of Hellenistic rural settlement from Crimea,” Antiquity 89 (344), 345–360 (2015). doi 10.15184/aqy.2014.10

    Article  Google Scholar 

  59. V. F. Stolba and F. N. Lisetskii, “Application of soil chronology in studies of ancient land use,” in The 4th International Congress EUROSOIL-2012 “Soil Science for the Benefit of Mankind and Environment” (Bari, Italy, 2012). doi 10.13140/2.1.4126.5441

    Google Scholar 

  60. K. W. G. Valentine, K. R. Fladmark, and B. E. Spurling, “The description, chronology and correlation of buried soils and cultural layers in a terrace section, Peace River valley, British Columbia,” Can. J. Soil Sci. 60 (2), 185–197 (1980).

    Article  Google Scholar 

  61. N. J. Vidic and F. Lobnik, “Rates of soil development of the chronosequence in the Ljubljana Basin, Slovenia,” Geoderma 76 (1–2), 35–64 (1997).

    Article  Google Scholar 

  62. H. Walkington, “Soil science applications in archaeological contexts: a review of key challenges,” Earth-Sci. Rev. 103, 122–134 (2010). doi 10.1016/jearscirev. 2010.09.002

    Article  Google Scholar 

  63. W. Wilcke, H. Valladarez, R. Stoyan, et al., “Soil properties on a chronosequence of landslides in Montana rain forest, Ecuador,” Catena 53 (1), 79–95 (2003). doi 10.1016/S0341-8162(02)00196-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Lisetskii.

Additional information

Original Russian Text © F.N. Lisetskii, V.F. Stolba, P.V. Goleusov, 2016, published in Pochvovedenie, 2016, No. 8, pp. 918–931.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisetskii, F.N., Stolba, V.F. & Goleusov, P.V. Modeling of the evolution of steppe chernozems and development of the method of pedogenetic chronology. Eurasian Soil Sc. 49, 846–858 (2016). https://doi.org/10.1134/S1064229316080056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316080056

Keywords

Navigation