Skip to main content
Log in

Disputable issues in interpreting the results of chemical extraction of iron compounds from soils

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In Russia, iron is chemically fractionated according to a parallel scheme. Pyrophosphate-soluble iron (Fepyr) is considered to participate in organomineral complexes, oxalate-soluble iron (Feox) is believed to enter amorphous + poorly crystallized compounds, and dithionite-soluble iron (Fedit) is meant to represent the free (nonsilicate) compounds. However, the investigations prove that the commonly used subtraction operations (Feox − Fepyr) and (Fedit − Feox) are invalid because of the nonadditive action of the reagents in the parallel scheme of extraction. The low selectivity of reagents requires a new interpretation of chemically extracted iron compounds. In automorphic soils, the content of oxalate-soluble iron should be interpreted as the amount of Fe(III) capable of complexing with organic ligands; in hydromorphic soils with a stagnant moisture regime, it should be interpreted as the amount of iron (III) capable of being reduced in a short time. The content of dithionite-soluble compounds should be regarded as the amount of iron (III) within both (hydr)oxides and silicates potentially prone to reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Askhabov, Processes and Mechanisms of Crystallogenesis, (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  2. V. F. Babanin, V. I. Trukhin, L. O. Karpachevskii, A. V. Ivanov, V. V. Morozov, Soil Magnetism (Yaroslavl-Moscow, 1995) [in Russian].

    Google Scholar 

  3. G. N. Belozerskii, M. I. Kazakov, E. I. Gagarina, and A. A. Khantulev, “Application of Mössbauer spectroscope for studying iron forms in forest soils,” Pochvovedenie, No. 9, 35–45 (1978).

    Google Scholar 

  4. Yu. N. Vodyanitskii, “The effect of dithionite-containing reagents on soil minerals,” Eur. Soil Sci. 35(5), 489–499 (2002).

    Google Scholar 

  5. Yu. N. Vodyanitskii, “Iron minerals in urban soils,” Eur. Soil Sci. 43(12), 1410–1417 (2010).

    Article  Google Scholar 

  6. Yu. N. Vodyanitskii, “On the dissolution of iron minerals in Tamm’s reagent,” Eur. Soil Sci. 34(10), 1086–1096 (2001).

    Google Scholar 

  7. Yu. N. Vodyanitskii, “Selectivity of the Mehra-Jackson reagent to iron-containing minerals in soils of the forest zone,” Eur. Soil Sci. 37(4), 388–401 (2004).

    Google Scholar 

  8. Yu. N. Vodyanitskii, A. A. Vasil’ev, E. G. Morgun, and K. A. Rumyantseva, “Selectivity of reagents used to extract iron from soil,” Eur. Soil Sci. 40(10), 1076–1086 (2007).

    Article  Google Scholar 

  9. Yu. N. Vodyanitskii, N. S. Mergelov, and S. V. Goryachkin, “Diagnostics of gleyzation upon a low content of iron oxides (using the example of tundra soils in the Kolyma Lowland),” Eur. Soil Sci. 41(3), 231–248 (2008).

    Article  Google Scholar 

  10. Yu. N. Vodyanitskii and S. A. Shoba, “Biogeochemistry of iron in waterlogged soils: a review,” Pochvovedenie, No. 9, 1047–1059 (2013).

    Google Scholar 

  11. M. A. Glazovskaya, “Natural landscape-geochemical processes and their manifestation in the territory of the Soviet Union,” Vestn. Mosk. Univ., Ser. Geograf., No. 5, 3–9 (1988).

    Google Scholar 

  12. E. V. Zhangurov, Extended Abstract of Candidate’s Dissertation in Agriculture (Moscow, 2013).

  13. S. V. Zonn, Iron in Soils (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  14. V. V. Kellerman and I. G. Tsyurupa, “Sources of mobile iron in soil,” Pochvovedenie, No. 10, 53–61 (1965).

    Google Scholar 

  15. P. V. Krasil’nikov and S. A. Shoba, Acid Sulfate Soils of Eastern Fennoscandia (KNTs RAN, Petrozavodsk, 1997) [in Russian].

    Google Scholar 

  16. S. N. Lesovaya, S. V. Goryachkin, E. Yu. Pogozhev, Yu. S. Polekhovskii, A. A. Zavarzin, A. G. Zavarzina, “Soils on Hard Rocks in the Northwest of Russia: Chemical and Mineralogical Properties, Genesis, and Classification Problems,” Eur. Soil Sci. 41(4), 363–376 (2008).

    Article  Google Scholar 

  17. Yu. G. Maksimova, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2013).

  18. G. V. Motuzova, A. K. Degtyareva, and V. V. Morozov, “The action of 0.1 N solutions of sulfuric acid, Tamm’s reagent, and Mehra-Jackson’s reagent on iron compounds in soddy-podzolic soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 67–72 (1991).

    Google Scholar 

  19. D. S. Orlov, Soil Humus Acids and A General Theory of Humification (Izd. Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  20. D. S. Orlov, Soil Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  21. D. E. Pukhov, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2002).

  22. V. F. Trukhina, Extended Abstract of Candidate’s Dissertation in Agriculture (Moscow, 1988).

  23. W. A. Adams and J. K. Kassim, “Iron oxyhydroxides in soils developed from lower paleozoic sedimentary rocks in Mid-Wales and implications for some pedogenetic processes,” J. Soil Sci. 35, 117–126 (1984).

    Article  Google Scholar 

  24. C. M. Bethke, R. A. Sandford, M. F. Kirk, Q. Jin, T. M. Flynn, “The thermodynamic ladder in geomicrobiology,” Am. J. Sci. 311, 183–210 (2011).

    Article  Google Scholar 

  25. M. A. Blesa, H. A. Marinovich, E. C. Baumgrater, and A. J. G. Maroto, “Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions,” Inorg. Chemistry 26, 3713–3717 (1987).

    Article  Google Scholar 

  26. C. M. Cardile, C. M. Childs, and J. S. Whitton, “The effect of citrate / bicarbonate / dithionite treatment on standard and soil smectites by 57Mössbauer spectroscopy,” Austral. J. Soil Res 25(2), 145–154 (1987).

    Article  Google Scholar 

  27. T. T. Chao and L. Zhou, “Extraction techniques for selective dissolution of amorphous oxides from soils and sediments,” Soil Sci. Soc. Am. J. 47, 225–232 (1983).

    Article  Google Scholar 

  28. T. Ericsson, J. Linares, and E. Lotse, “A Mössbauer study of the effect of ditionite/citrate/bicarbonate treatment on a vermiculite, a smectite and a soil,” Clay Miner. 19, 85–91 (1984).

    Article  Google Scholar 

  29. F. Favre, D. Tessier, M. Abdelmaula, J. M. Genin, W. P. Gates, P. Boivin, “Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil,” Eur. J. Soil Sci. 53, 175–183 (2002).

    Article  Google Scholar 

  30. C.-I. Fialips, D. Huo, L. Yan, J. Wu, J. W. Stucki, “Infrared study of reduced and reduced-reoxidized ferruginous smectite,” Clays Clay Miner 50, 455–469 (2002).

    Article  Google Scholar 

  31. E. E. Gamble and R. B. Daniels, “Iron and silica in water, acid ammonium oxalate, and dithionite extracts of some North Carolina coastal plain soils,” Soil Sci. Soc. Am. Proc. 36, 939–943 (1972).

    Article  Google Scholar 

  32. C. M. Hansel, S. G. Benner, J. Neiss, A. Dohnalkova, R. K. Kukkadapu, S. Fendorf, “Secondary mineralization pathways induced by dissmilatory iron reduction of ferrihydrite under advective flow,” Geochim. Cosmochim. Acta 67, 2977–2992 (2003).

    Article  Google Scholar 

  33. X.-F. Hu, Y. Su, R. Ye, X.-Q. Li, and G.-L. Zhang, “Magnetic properties of the urban soils in Shanghai and their environmental implications,” Catena 70, 428–436 (2007).

    Article  Google Scholar 

  34. L. S. Hundall, A. M. Carmo, W. L. Bleam, and M. L. Thompson, “Sulfur in Biosolis-Derived Fulvic Acid: Characterization by XANES Spectroscopy and Selective Dissolution Approaches,” Environ. Sci. Technol. 34, 5184–5188 (2000).

    Article  Google Scholar 

  35. E. Jeanroy, B. Guillet, P. Lelcroix, and Ch. Janot, “Soil iron forms: comparison between chemical methods and Mösbauer spectrometry,” Sci. Sol, No. 1, 135–136 (1986).

    Google Scholar 

  36. A. D. Karathanasis and Y. L. Thompson, “Mineralogy of iron precipitates in a constructed acid mine drainage wetland,” Soil Sci. Soc. Am. J. 59, 1773–1781 (1995).

    Article  Google Scholar 

  37. O. Larsen, D. Postma, and R. Jakobsen, “The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Romo, Denmark),” Geochim. Cosmochim. Acta 70, 4827–4835 (2006).

    Article  Google Scholar 

  38. R. Lee, M. D. Taylor, B. K. Daly, and J. Reynolds, “The extraction of Al, Fe and Si from a range of New Zealand Soils by hydroxylamine and ammonium oxalate solutions,” Aust. J. Soil Res 27, 377–388 (1989).

    Article  Google Scholar 

  39. D. R. Lovley and E. J. P. Phillips, “Organic matter mineralization with reduction of ferric iron in anaerobic sediments,” Appl. Environ. Microbiol. 51, 683–689 (1986).

    Google Scholar 

  40. S. G. Lu and S. Q. Bai, “Magnetic characterization and magnetic mineralogy of the Hangzhou urban soils and its environmental implications,” Chinese J. Geophys. 51, 549–557 (2008).

    Article  Google Scholar 

  41. S. G. Lu, S. Q. Bai, and Q. F. Xue, “Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China,” Geophys. J. Int. 171, 568–580 (2007).

    Article  Google Scholar 

  42. J. A. McKeague and J. H. Day, “Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils,” Can. J. Soil Sci. 46, 13–22 (1966).

    Article  Google Scholar 

  43. M. G. Morra, S. E. Fendorf, and P. D. Brown, “Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy,” Geochim. Cosmohim. Acta 61, 683–688 (1997).

    Article  Google Scholar 

  44. J. C. Munch and J. C. G. Ottow, “Preferential reduction of amorphous to crystalline iron oxides by bacterial activity,” Soil Sci. 129, 15–21 (1980).

    Article  Google Scholar 

  45. E. Murad, “Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides,” Z. Pflanzen. Bodenk. 150, 279–285 (1987).

    Article  Google Scholar 

  46. R. L. Parfit, “Optimum conditions for extraction of Al, Fe, and Si from soil with acid oxalate,” Commun. Soil Sci. Plant Anal. 20, 801–816 (1989).

    Article  Google Scholar 

  47. R. L. Parfit and C. W. Childs, “Estimation of forms of Fe and Al: a review and analysis of contrasting soils by dissolution and Mossbauer methods,” Austral. J. Soil Res. 26, 121–144 (1988).

    Article  Google Scholar 

  48. E. E. Roden, “Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics,” Geoch. Cosm. Acta 68, 3205–3216 (2004).

    Article  Google Scholar 

  49. E. E. Roden, “Fe(III) oxide reactivity toward biological versus chemical reduction,” Environ. Sci. Technol. 37, 1319–1324 (2003).

    Article  Google Scholar 

  50. E. E. Roden and M. M. Urrutia, “Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction,” Geomicrobiol. J. 19, 209–251 (2002).

    Article  Google Scholar 

  51. E. E. Roden and J. M. Zachara, “Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth,” Environ. Sci. Technol. 30, 1618–1628 (1996).

    Article  Google Scholar 

  52. G. J. Ross, C. Wang, and P. A. Schuppli, “Hydroxylamine and ammonium oxalate solutions as extractants for iron and aluminum from soils,” Soil Sci. Soc. Am. J. 49, 783–785 (1995).

    Article  Google Scholar 

  53. U. Schwertmann, “Occurrence and formation of iron oxides in various pedoenvironments,” in Iron in Soils and Clay Minerals (NATO, Reidel, Dordrecht, 1988), pp. 267–308 (1988).

    Chapter  Google Scholar 

  54. U. Schwertmann, “Solubility and dissolution of iron oxides,” Plant Soil 130, 1–25 (1991).

    Article  Google Scholar 

  55. R. A. Schuppli, G. J. Ross, and J. A. McKeague, “The effective removal of suspended materials from pyrophosphate extracts of soils from tropical and temperate regions,” Soil Sci. Soc. Am. J. 47, 1026–1032 (1983).

    Article  Google Scholar 

  56. S. Shoji and J. Fujiwara, “Active aluminum and iron in the humus horizons from north-eastern Japan,” Soil Sci. 137, 216–226 (1984).

    Article  Google Scholar 

  57. D. Suter, C. Siffert, B. Sulzberger, and W. Stumm, “Catalytic dissolution of iron(III) (hydr)oxides by oxalic acid in the presence of Fe(II),” Naturwissenschaften 75, 571–573 (1988).

    Article  Google Scholar 

  58. M. Smitha and A. N. Roychoudnurd, “Mobilisation of iron from rocks in a fractured aquifer: lithological and geochemical controls,” Applied Geochem. 31, 171–186 (2013).

    Article  Google Scholar 

  59. J. W. Stucki, K. Lee, B. A. Goodman, and J. E. Kostka, “Effects of in situ biostimulation on iron mineral speciation in a sub-surface soil,” Geochim. Cosmochim. Acta 71, 835–843 (2007).

    Article  Google Scholar 

  60. J. W. Stucki, K. Lee, L. Zhang, and R. A. Larson, “Effects of iron oxidation on the surface and structural properties of smectites,” Pure Appl. Chem. 74, 2081–2094 (2002).

    Article  Google Scholar 

  61. J. W. Stucki, C. D. Roth, and D. C. Golden, “Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites,” Clays Clay Miner. 32(5), 350–356 (1984).

    Article  Google Scholar 

  62. P. M. van Bodegom, J. van Reeven, and H. A. C. D. van der Gon, “Prediction reducible soil iron content from iron extraction data,” Biogeochemistry 64, 231–245 (2003).

    Article  Google Scholar 

  63. A. L. Walker, “The effects of magnetite on oxalate- and dithionite-extractable iron,” Soil Sci. Soc. Am. J. 47, 1022–1026 (1983).

    Article  Google Scholar 

  64. World Reference Base for Soil Resources Draft (ISSS/ISRIC/FAO, Wageningen-Rome, 1994).

  65. H. Yao, R. Conrad, R. Wassmann, and H. U. Neue, “Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines and Italy,” Biogeochemistry 47, 269–295 (1999).

    Article  Google Scholar 

  66. J. M. Zachara, J. K. Fredrickson, S. Li, D. W. Kennedy, S. C. Smith, and P. L. Gassman, “Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials,” Am. Mineral. 83, 1426–1443 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, S.A. Shoba, 2014, published in Pochvovedenie, 2014, No. 6, pp. 697–704.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Shoba, S.A. Disputable issues in interpreting the results of chemical extraction of iron compounds from soils. Eurasian Soil Sc. 47, 573–580 (2014). https://doi.org/10.1134/S106422931406009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422931406009X

Keywords

Navigation