Skip to main content
Log in

Soil carbon pools in tundra and taiga ecosystems of northeastern Europe

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

This paper is dedicated to the blessed memory of Galina Mazhitova, who initiated and personally participated in fieldwork laid in the basis of this study.

Abstract

The mean pools of soil carbon were determined for the first time for twelve soil groups (according to the World Reference Base for Soil Resources, 2006) on four test plots with the use of the high-resolution (Landsat and QuickBird) satellite imagery, original field data on more than 200 soil profiles, and literature data included in the soil database. Three test plots belonged to the ecotone between tundra and forest-tundra zones, and the fourth plot characterized the middle taiga zone. Spatial distribution patterns of soil carbon in different soil subgroups and genetic horizons were characterized for the areas with the mosaic soil and vegetation covers. The mean soil carbon content for the first three test plots in permafrost area was estimated at 39.5 kg C/m2, including 28.7 kg C/m2 in the upper soil meter. The mean soil carbon pool of the taiga plot reached 16.7 kg C/m2 (0–100 cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soil Atlas of the Komi Republic, Ed. by G. V. Dobrovol’skii, A. I. Taskaev, and I. V. Zaboeva (Komi Respublikanskaya Tipogr., Syktyvkar, 2010) [in Russian].

    Google Scholar 

  2. D. A. Kaverin, O. V. Shakhtarova, A. V. Pastukhov, G. G. Mazhitova, and E. M. Lapteva, “Large-scale soil mapping on the basis of supervised classification of satellite imagery (by the example of key plots in tundra and forest-tundra of the European northeast)” Geogr. Prir. Resur. (2012).

    Google Scholar 

  3. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  4. M. A. Kuznetsov, Extended Abstract of Candidate’s Dissertation in Biology (Syktyvkar, 2010).

    Google Scholar 

  5. G. G. Mazhitova and D. A. Kaverin, “Dynamics of seasonal thawing depth and precipitation on a circumpolar active layer monitoring (CALM) plot in the European part of Russia,” Kriosfera Zemli 11(4), 20–30 (2007).

    Google Scholar 

  6. G. G. Mazhitova, V. G. Kazakov, E. V. Lopatin, and T. Virtanen, “Geographic information system and soil carbon estimates for the Usa River basin, Komi Republic,” Eur. Soil Sci. 36(2), 123–135 (2003).

    Google Scholar 

  7. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter of Soils in the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  8. O. V. Chestnykh and D. G. Zamolodchikov, “Bulk density of soil horizons as dependent on their humus content,” Eur. Soil Sci. 37(8), 816–823 (2004).

    Google Scholar 

  9. O. V. Chestnykh, D. G. Zamolodchikov, A. I. Utkin, and G. N. Korovin, “Distribution of organic carbon pools in the soils of Russian forests,” Lesovedenie, No. 2, 13–21 (1999).

    Google Scholar 

  10. ACIA. The Arctic Climate Impact Assessment: Impacts of a Warming Arctic (Cambridge Univ. Press, Cambridge, UK, 2004).

  11. J. H. Christensen et al., “Regional climate projections,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon et al. (Cambridge Univ. Press, Cambridge, UK, 2007).

    Google Scholar 

  12. R. V. Desyatkin, T. S. Maximov, and B. I. Ivanov, “Carbon storage of plant ecosystems in Yakutia,” Proc. of the Second Symp. on the Joint Siberian Permafrost Studies between Japan and Russian in 1993 (NIES, Tsukuba, Japan, 1994), pp. 187–195.

    Google Scholar 

  13. S. E. Hobbie and F. S. Chapin III, “The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming,” Ecology 79, 1526–1544 (1998).

    Google Scholar 

  14. G. Hugelius and P. Kuhry, “Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment,” Glob. Biogeochem. Cycles 23, GB3006 (2009).

    Article  Google Scholar 

  15. G. Hugelius, P. Kuhry, C. Tarnocai, and T. Virtanen, “Soil oanic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic,” Permafrost Perigl. Proc. 21, 16–29 (2010).

    Article  Google Scholar 

  16. G. Hugelius, T. Virtanen, D. Kaverin, A. Pastukhov, F. Rivkin, S. Marchenko, V. Romanovsky, P. Kuhry, “High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic,” J. Geophys. Res. 116, G03024 (2011).

    Article  Google Scholar 

  17. IUSS Working Group WRB. World Reference Base for Soil Resources 2006, 2nd ed. World Soil Resources Reports No. 103 (FAO, Rome, 2006).

    Google Scholar 

  18. T. P. Kolchugina, T. S. Vinson, G. G. Gaston, V. A. Rozhkov, S. F. Schlentner, “Carbon pools, fluxes, and sequestration potential in soils of the Former Soviet Union,” in Soil Management and Greenhouse Effect, Ed. by R. Lal, J. Kimble, E. Levine, and B. Stewart (Lewis, Boca Raton, FL, 1995).

    Google Scholar 

  19. P. Kuhry, G. G. Mazhitova, P. -A. Forest, S. V. Deneva, T. Virtanen, and S. Kultti, “Upscaling soil organic carbon estimates for the Usa basin (northeast European Russia) using gis-based landcover and soil classification schemes,” Danish J. Geogr. 102, 11–25 (2002).

    Google Scholar 

  20. A. D. McGuire, L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet, “Sensitivity of the carbon cycle in the Arctic to climate change,” Ecological Monographs 79, 523–555 (2009).

    Article  Google Scholar 

  21. C. L. Ping, G. J. Michaelson, M. T. Jorgenson, J. M. Kimble, H. Epstein, V. E. Romanovsky, and D. A. Walker, “High stocks of soil organic carbon in the North American Arctic region,” Nature Geoscience 1, 615–619 (2008).

    Article  Google Scholar 

  22. Procedures for soil analyses, 6th ed., Ed. by L.P. van Reeuwijk (ISRIC, Wageningen, 2002).

    Google Scholar 

  23. V. E. Romanovsky, D. S. Drozdov, N. G. Oberman, G. V. Malkova, A. L. Kholodov, S. S. Marchenko, N. G. Moskalenko, D. O. Sergeev, N. G. Ukraintseva, A. A. Abramov, D. A. Gilichinsky, A. A. Vasiliev, “Thermal state of permafrost in Russia,” Permafrost Perigl. Process 21, 136–155 (2010).

    Article  Google Scholar 

  24. V. Romanovsky, S. Smith, and H. Christiansen, “Permafrost thermal 982 state in the Polar Northern Hemisphere during the International Polar Year 2007–2009: a synthesis,” Permafrost Perigl. Processes 21, 106–116 (2010).

    Article  Google Scholar 

  25. V. A. Rozhkov, V. B. Wagner, B. M. Kogut, D. E. Konyushkov, S. Nilsson, V. B. Sheremet, and A. Shvidenko, Soil Carbon Estimates and Soil Carbon Map for Russia (IIASA Working Paper 96-60) (IIASA, Laxenburg, Austria, 1996).

    Google Scholar 

  26. W. H. Schlesinger, “Carbon balance in terrestrial detritus,” Ann. Rev. Ecol. Syst. 8, 51–81 (1977).

    Article  Google Scholar 

  27. E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, C. Tarnocai, S. Venevsky, J. G. Vogel, S. A. Zimov, “Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,” BioScience 58(8), 701–714 (2008).

    Article  Google Scholar 

  28. S. L. Smith, V. E. Romanovsky, A. G. Lewkowicz, C. R. Burn, M. Allard, G. D. Clow, K. Yoshikawa, J. Throop, “Thermal state of permafrost in north america: a contribution to the International Polar Year,” Permafrost Perigl. Processes 21, 117–135 (2010).

    Article  Google Scholar 

  29. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, S. Zimov, “Soil organic carbon pools in the Northern circumpolar permafrost region,” Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  30. T. Virtanen and P. Kuhry, “Comparison of a regional landsat image based land cover classification to global data sets in Northeast European Russia,” Rep. Polar Mar. Res 520, 133–138 (2006).

    Google Scholar 

  31. M. D. Walker, C. H. Wahren, R. D. Hollister, G. H. R. Henry, L. E. Ahlquist, J. M. Alatalo, M. S. Bret-Harte, M. P. Calef, T. V. Callaghan, A. B. Carroll, H. E. Epstein, I. S. Jonsdottir, J. A. Klein, B. Magnusson, U. Molau, S. F. Oberbauer, S. P. Rewa, C. H. Robinson, G. R. Shaver, K. N. Suding, C. C. Thompson, A. Tolvanen, O. Totland, P. L. Turner, C. E. Tweedie, P. J. Webber, P. A. Wookey, “Plant community responses to experimental warming across the tundra biome,” Proc. of the National Academy of Sciences 103(5), 1342–1346 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pastukhov.

Additional information

Original Russian Text © A.V. Pastukhov, D.A. Kaverin, 2013, published in Pochvovedenie, 2013, No. 9, pp. 1084–1094.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastukhov, A.V., Kaverin, D.A. Soil carbon pools in tundra and taiga ecosystems of northeastern Europe. Eurasian Soil Sc. 46, 958–967 (2013). https://doi.org/10.1134/S1064229313070077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313070077

Keywords

Navigation