Skip to main content
Log in

The destruction of quartz, amorphous silica minerals, and feldspars in model experiments and in soils: Possible mechanisms, rates, and diagnostics (the analysis of literature)

  • Mineralogy and Micromorphology of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The dissolution of quartz and amorphous SiO2 proceeds via the adsorption of water molecules on the surface of these minerals with the further formation of four silanol groups around the silicon atom and the detachment of the molecules of orthosilicic acid from the surface. The rates of quartz dissolution at pH 7 and 3 constitute 10−15.72 and 10−16.12 mol/m2 s, respectively. They increase by three orders of magnitude upon the rise in pH from 7 to 10; they also increase in the solutions of strong electrolytes and in the presence of the anions of polybasic organic acids. The dissolution of feldspars begins from the release of alkali metals and calcium from the surface of crystal lattices of these minerals into the solution in the course of the cation exchange reaction. This is a fast process, and it does not control the rate of the feldspar dissolution that depends on the concentrations of protonated (in the acid medium) and deprotonated (in the alkaline medium) complexes with participation of the surface Si-O-Si and Al-O-Si groups of the mineral lattices. The rate of dissolution of K-Na feldspars decreases from n × 10−11 to n × 10−12 mol/m2 s upon the rise in pH from 3 to 5; it also increases in the plagioclase series with an increase in the portion of anorthite molecules and in the presence of the anions of polybasic organic acids in the solution. The rate of dissolution of feldspars in the model experiments is by 1–3 orders of magnitude higher than that obtained by different methods for native soils. This may be related to the adequacy of determination of the specific surface and its changes with time in native soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Aristovskaya, Microbiology of Podzolization Processes (Izd. Akad. Nauk SSSR, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. L. A. Vorob’eva, Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  3. A. D. Voronin, Structural-Functional Hydrophysics of Soils (Izd. Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  4. R. M. Garrels and Ch. L. Christ, Solutions, Minerals, and Equilibria (Harper and Row, New York, 1965).

    Google Scholar 

  5. T. G. Dobrovol’skaya, Structure of Soil Bacterial Communities (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  6. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  7. V. I. Lebedev, “Some Crystallochemical Regularities of the Formation of Clay Minerals in Light of the Theory of Ion and Atomic Radiuses,” Vestn. Leningr. Univ., Ser. Geol., No. 6, 28–36 (1972).

  8. M. S. Malinina and S. V. Ivanilova, “Phenol Compounds in Solutions of Soils of Different Types in the Central Forest State Biosphere Reserve,” Eur. Soil Sci. 41(4), 377–385 (2008).

    Article  Google Scholar 

  9. L. A. Matveeva, E. I. Sokolova, and Z. S. Rozhdestvenskaya, Experimental Study of Al in the Zone of Supergenesis (Izd. Akad. Nauk SSSR, Moscow, 1975) [in Russian].

    Google Scholar 

  10. Minerals (Nauka, Moscow, 1992), Vol. 4 [in Russian].

  11. D. S. Orlov, Soil Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  12. V. V. Ponomareva, T. A. Rozhnova, and N. S. Sotnikova, “Modern Processes of Element Migration and Accumulation in the Profiles of Podzolic Soils (Lysimetric Data),” in Soils of Karelia and the Ways to Improve Their Fertility (Kareliya, Petrozavodsk, 1971), pp. 17–32 [in Russian].

    Google Scholar 

  13. A. A. Rode, Podzol-Forming Process (Izd. Akad. Nauk SSSR, Moscow, 1937) [in Russian].

    Google Scholar 

  14. G. A. Simonov, State and Evolution of the Mineral Soil Mass: Genetic Aspects (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  15. T. A. Sokolova, “The Role of Soil Biota in the Weathering of Minerals: A Review of Literature,” Eur. Soil Sci. 44(1), 56–72 (2011).

    Article  Google Scholar 

  16. T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Clay Minerals in Soils (Moscow, 2005) [in Russian].

  17. V. V. Sysuev, “Migration of Chemical Substances in Conjugated Ecosystems of the Terminal Moraine Valdai Landscape,” in Structure and Functioning of Ecosystems in the Southern Taiga Zone (Nauka, Moscow, 1986), pp. 134–149 [in Russian].

    Google Scholar 

  18. V. O. Targulian, “Soil Memory: Formation, Carriers, and Spatial-Temporal Diversity,’ in Soil Memory (URSS, Moscow, 2008) [in Russian].

    Google Scholar 

  19. V. O. Targulian, “Elementary Pedogenic Processes,” Eur. Soil Sci. 38(12), 1255–1264 (2005).

    Google Scholar 

  20. V. O. Targulian, T. A. Sokolova, A. V. Kulikov, et al., Organization, Composition, and Genesis of a Soddy Pale-Podzolic Soil on Mantle Loam. Analytical Study (Moscow, 1974).

  21. V. O. Targulian and T. A. Sokolova, “Soil as a Biotic /Abiotic Natural System: A Reactor, Memory, and Regulator of Biospheric Interactions,” Eur. Soil Sci. 29(1), 30–41 (1996).

    Google Scholar 

  22. V. O. Targulian, A. D. Fokin, T. A. Sokolova, and S. A. Shoba, “Experimental Studies of Pedogenesis: Possibilities, Limitations, and Prospects,” Pochvovedenie, No. 1, 15–23 (1989).

  23. I. I. Tolpeshta, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).

  24. E. V. Shein, A Course of Soil Physics (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  25. Elementary Pedogenic Processes. An Experience in Conceptual Analysis, Characterization, and Systematization (Nauka, Moscow, 1992) [in Russian].

  26. D. C. Bain, L. Tau Strandt, J. P. Gustaffson, P.-A. Melkerud, and A. R. Fraser, “Chemistry, Mineralogy and Morphology of Spodosols at Two Swedish Sites Used to Asses Methods of Counteracting Acidification,” Water, Air, and Soil Pollution: Focus 3, 29–47 (2003).

    Article  Google Scholar 

  27. D. C. Bain, A. Mellor, M. J. Wilson, and D. M. L. Duthie, “Weathering in Scottish and Norwegian Catchments,” in The Surface Waters Acidification Program, Ed. by B. J. Mason (Cambridge Univ. Press, 1990).

  28. P. C. Bennet, M. E. Melcer, D. I. Siegel, and J. P. Hasset, “The Dissolution of Quartz in Dilute Aqueous Solutions of Organic Acids at 25°C,” Geochim. Cosmochim. Acta 52(6), 1521–1530 (1988).

    Article  Google Scholar 

  29. P. C. Bennet, “The Dissolution of Quartz in Organic Rich Aqueous Systems,” Geochim. Cosmochim. Acta 55(7), 1781–1797 (1991).

    Article  Google Scholar 

  30. R. A. Berner, “Rate Control of Mineral Dissolution under Earth Surface Conditions,” Am. J. Science 278, 1235–1252 (1978).

    Article  Google Scholar 

  31. A. Blum and A. Lasaga, “Role of Surface Speciation in the Low-Temperature Dissolution of Minerals,” Nature 331, 431–433 (1988).

    Article  Google Scholar 

  32. A. E. Blum and A. C. Lasaga, “The Role of Surface Speciation in the Dissolution of Albite,” Geochim. Cosmochim. Acta 55, 2193–2201 (1991).

    Article  Google Scholar 

  33. R. Bouabid, E. A. Nater, and P. R. Bloom, “Characterization of the Weathering Status of Feldspar Minerals in Sandy Soils of Minnesota Using SEM and EDX,” Geoderma 66, 137–149 (1995).

    Article  Google Scholar 

  34. F. Brandt, D. Bosbach, E. Krawczyk-Bärsch, A. Thuro, and G. Bernhard, “Chlorite Dissolution in the Acid pH Range: A Combined Microscopic and Macroscopic Approach,” Geochim. Cosmochim. Acta 67(8), 1451–1461 (2003).

    Article  Google Scholar 

  35. S. A. Carrol-Webb and J. V. Walter, “A Surface Complex Reaction Model for the pH-Dependence of Corundum and Kaolinite Dissolution Rates,” Geochim. Cosmochim. Acta 52, 2609–2623 (1988).

    Article  Google Scholar 

  36. S. A. Carroll, R. S. Maxwell, W. Bourcier, M. Sue, and S. Hulsay, “Evaluation of Silica-Water Surface Chemistry Using NMR Spectroscopy,” Geochim. Cosmochim. Acta 66(6), 913–926 (2002).

    Article  Google Scholar 

  37. W. H. Casey, H. R. Westrich, and G. R. Holdren, “Dissolution Rates of Plagioclase at pH 2 and 3,” Am. Mineral. 76, 211–217 (1991).

    Google Scholar 

  38. L. Chou and R. Wollast, “Steady-State Kinetics and Dissolution of Albite,” Am. J. Science 285, 963–993 (1985).

    Article  Google Scholar 

  39. L. Chou and R. Wollast, “Study of the Weathering of Albite at Room Temperature and Pressure with a Fluidized Bed Reactor,” Geochim. Cosmochim. Acta 48, 2205–2218 (1984).

    Article  Google Scholar 

  40. P. M. Dove, “The Dissolution Kinetics of Quartz in Aqueous Mixed Cation Solutions,” Geochim. Cosmochim. Acta 63, 3715–3727 (1999).

    Article  Google Scholar 

  41. P. M. Dove and D. A. Crerar, “Kinetics of Quartz Dissolution in Electrolyte Solutions Using a Hydrothermal Mixed Flow Reactor,” Geochim. Cosmochim. Acta 54, 955–969 (1990).

    Article  Google Scholar 

  42. P. M. Dove and C. J. Nix, “The Influence of the Alkaline Earth Cations, Magnesium, Calcium, and Barium on the Dissolution Kinetics of Quartz,” Geochim. Cosmochim. Acta 61, 3329–3340 (1997).

    Article  Google Scholar 

  43. J. I. Drever and L. L. Stilling, “The Role of Organic Acids in Mineral Weathering,” Coll. Surfaces. A: Physicochem. Engin. Aspects 120, pp. 167–181 (1997).

    Article  Google Scholar 

  44. H. L. Ehrlich, Geomicrobiology (Marcel Dekker Inc. Basel, New York, 2002).

    Book  Google Scholar 

  45. H. L. Ehrlich, “How Microbes Influence Mineral Growth and Dissolution,” Chem. Geol. 132, 5–9 (1996).

    Article  Google Scholar 

  46. E. W. Friedrich, “Uber die Einwirkung heterotropher Mikroorganismen auf die Zersetzung silikatischer Minerale,” Z. Pflanzen. Bodenk. 142, 434–445 (1979).

    Article  Google Scholar 

  47. M. E. Essington, Soil and Water Chemistry. An Integrative Approach (CRC, Boca Raton, 2004).

    Google Scholar 

  48. G. Furrer and W. Stumm, “The Role of Surface Coordination in the Dissolution of δ-Al2O3 in Dilute Acids,” Chimia 37, 338–341 (1983).

    Google Scholar 

  49. G. Furrer and W. Stumm, “The Coordination Chemistry of Weathering. I. Dissolution kinetics of δ-Al2O3 and BeO,” Geochim. Cosmochim. Acta, 50, 1847–1860 (1986).

    Article  Google Scholar 

  50. M. Geoffrey, “Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation,” Mycol. Res. 111, 3–49 (2007).

    Article  Google Scholar 

  51. R. Gout, E. H. Oelkers, J. Schott, and A. Zwick, “The Surface Chemistry and Structure of Acid-Leached Albite: New Insight on the Dissolution Mechanism of the Alkali Feldspars,” Geochim. Cosmochim. Acta 61(14), 3013–3018 (1997).

    Article  Google Scholar 

  52. C. Guy and J. Schott, “Multisite Surface Reaction versus Transport Control during the Hydrolysis of a Complex Oxide,” Chem. Geol. 78, 181–204 (1989).

    Article  Google Scholar 

  53. R. Hellmann, J.-M. Penisson, R. L. Hervig, J.-H. Thomassin, and M.-F. Abrioux, “An EFTEM/HRTEM High-Resolution Study of the Near Surface of Labradorite Feldspar Altered at Acid pH: Evidence for Interfacial Dissolution-Reprecipitation,” Phys. Chem. Min. 30, 192–197 (2003).

    Article  Google Scholar 

  54. W. H. Hendershot and L. M. Lavkulich, “The Use of ZPC to Assess Pedological Development,” Soil Sci. Soc. Am. J. 42(1), 136–141 (1978).

    Google Scholar 

  55. M. E. Hodson, S. J. Langan, and S. Meriau, “Determination of Mineral Surface Area in Relation to the Calculation of Weathering Rates,” Geoderma 83, 35–54 (1998).

    Article  Google Scholar 

  56. W. H. Huang, “Organic Acids as Agents of Chemical Weathering of Silicate Minerals,” Natl. Physic. Sci. 239(96), 149–151 (1990).

    Google Scholar 

  57. W. H. Huang and W. D. Keller, “Dissolution of Rock-Forming Silicate Minerals in Organic Acids Simulated First-Stage Weathering of Fresh Mineral Surfaces,” Am. Mineral. 55, 2076–2094 (1970).

    Google Scholar 

  58. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, New York, 1979).

    Google Scholar 

  59. A. D. Karathanasis, “Mineral Equilibria in Environmental Soil System,” in Soil Mineralogy with Environmental Application, Ed. by J. B. Dixon and D. G. Schulze (Madison, WI, USA, 2002), pp. 109–152.

  60. M. Karlsson, C. Graven, P. M. Dove, and W. H. Casey, “Surface Charge Concentration on Silica Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates,” Aquat. Geochem. 7, 13–32 (2001).

    Article  Google Scholar 

  61. Kobayashi Mayumi et al., “Acid Dissolution of Olivines, Feldspars, and Dunite,” Water, Air Soil Pollution 130, 757–762 (2001).

    Article  Google Scholar 

  62. J. D. Kubicki, G. A. Blake, and S. E. Apitz, “Ab Initio Calculations on Aluminosilicate Q3 Species: Implications for Atomic Structures of Mineral Surfaces and Dissolution Mechanism of Feldspars,” Am. Mineral. 81, 789–799 (1996).

    Google Scholar 

  63. A. C. Lasaga, “Chemical Kinetics of Water-Rock Interaction,” J. Geophys. Res 89(Iss. B6), 4009–4025 (1984).

    Article  Google Scholar 

  64. A. Lasaga and R. J. Kirkpatrick (Eds.) Kinetics of Geochemical Processes (Mineralogical Soc. Am., 1981).

  65. A. C. Lasaga and G. V. Gibbs, “Ab-Initio Quantum Mechanical Calculations of Water-Rock Interactions: Adsorption and Hydrolysis Reactions,” Am. J. Sci. 290, 263–295 (1990).

    Article  Google Scholar 

  66. W. L. Lindsay, Chemical Equilibria in Soils (John Wiley and Sons, N.Y., 1979).

    Google Scholar 

  67. F. C. Loughnan, Chemical Weathering of Silicate Minerals (Kensington, Australia, 1969).

    Google Scholar 

  68. E. Matzner and B. Ulrich, “The Turnover of Protons by Mineralization and Uptake,” in Effect of Accumulation of Air Pollutants on Forest Ecosystems, Ed. by B. Ulrich and J. Pankrath (Reidel, Boston, 1983), pp. 93–103.

  69. K. L. Moulton, J. West, and R. A. Berner, “Solute Flux and Mineral Mass Balance Approaches to the Quantification of Plant Effects on Silicate Weathering,” Am. J. Sci. 300, 539–570 (2000).

    Article  Google Scholar 

  70. K. L. Moulton and R. A. Berner, “Quantification of the Effects of Plants on Weathering: Studies in Iceland,” Geology 26, 895–898 (1998).

    Article  Google Scholar 

  71. B. Mukhopadhyay and J. V. Walther, “Acid-Base Chemistry of Albite Surfaces in Aqueous Solutions at Standard Temperature and Pressure,” Chem. Geol. 174, 415–443 (2001).

    Article  Google Scholar 

  72. M. Ochs, “Influence of Humified and Non-Humified Natural Organic Compounds on Mineral Dissolution,” Chem. Geol. 132, 119–124 (1996).

    Article  Google Scholar 

  73. E. H. Oelkers, J. Schott, and J. L. Devidal, “The Effect of Aluminum, eÍ and Chemical Affinity on the Rates of Aluminosilicate Dissolution Reactions,” Geochim. Cosmochim. Acta 58(4), 2011–2024 (1994).

    Article  Google Scholar 

  74. E. H. Oelkers and J. Schott, “Experimental Study of Anorthite Dissolution and the Relative Mechanism of Feldspar Hydrolysis,” Geochim. Cosmochim. Acta 59(4), 5039–5053 (1995).

    Article  Google Scholar 

  75. E. H. Oelkers and J. Schott, “Does Organic Acid Adsorption Affect Alkali-Feldspar Dissolution Rates?” Chem. Geol. 151, 234–245 (1998).

    Google Scholar 

  76. E. H. Oelkers, S. V. Golubev, Cl. Chairat, O. S. Pokrovsky, and J. Schott, “The Surface Chemistry of Multi-Oxide Silicates,” Geochim. Cosmochim. Acta 73(14), 4617–4634 (2009).

    Article  Google Scholar 

  77. G. A. Parks, “Aqueous Surface Chemistry of Oxides and Complex Oxide Minerals” in Equilibrium Concepts in Natural Water Systems, Ed. by W. Stumm, Am. Chem. Soc. Adv. Chem 67, 121–160 (1967).

  78. M. Robert and M. Razzaghe-Karimi, “Mise en Evedence de Deuz Types d’Evolution Mineralogique des Micas Trioctaedriques en Presence d’Acidies Organiques Hydrosoluble,” C.R. Acad. Sci. Paris 280 (Ser. D), 2175–2178 (1975).

    Google Scholar 

  79. J. Schott and R. A. Berner, “Dissolution Mechanism of Pyroxenes and Olivines during Weathering,” in The Chemistry of Weathering, Ed. by J. I. Drever (D. Reidel Publ. Co., Dodrecht, 1985), pp. 35–53.

    Chapter  Google Scholar 

  80. L. Sigg and W. Stumm, “The Interactions of Anions and Weak Acids with the Hydrous Goethite (α-FeOOH) Surface,” Coll. Surf. 2, 101–117 (1981).

    Article  Google Scholar 

  81. M. M. Smits, E. Hoffland, A. G. Jongmans, and N. van Breemen, “Contribution of Mineral Tunneling to Total Feldspar Weathering,” Geoderma 125, 59–69 (2005).

    Article  Google Scholar 

  82. G. Sposito, The Environmental Chemistry of Aluminum (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  83. L. L. Stillings, S. L. Brantley, and M. L. Machesky, “Proton Adsorption at an Adularia Feldspar Surface,” Geochim. Cosmochim. Acta 59(8), 1473–1482 (1995).

    Article  Google Scholar 

  84. L. L. Stillings and S. L. Brantley, “Feldspar Dissolution at 25°C and pH 3: Reaction Stoichiometry and the Effect of Cations,” Geochim. Cosmochim. Acta 59(8), 1483–1496 (1995).

    Article  Google Scholar 

  85. L. L. Stillings, J. I. Drever, S. L. Brantley, Yanting Sun, and R. Oxburgh, “Rates of Feldspar Dissolution at pH 3–7 with 0–8 MM Oxalic Acid,” Chemical Geol. 132, 79–89 (1996).

    Article  Google Scholar 

  86. W. Stumm, Chemistry of the Solid-Water Interface (J. Wiley & Sons, N.Y., 1992).

    Google Scholar 

  87. W. Stumm and J. J. Morgan, Aquatic Chemistry 2nd Ed. (J. Wiley & Sons, New York, 1981).

    Google Scholar 

  88. W. Stumm, G. Furrer, E. Wieland, and B. Zinder, “The Effects of Complex-Forming Ligands on the Dissolution of Oxides and Alumino-Silicates,” in The Chemistry of Weathering, Ed. by J. I. Drever (D. Reidel Publ. Co., Dordrecht, 1985), pp. 55–74.

    Chapter  Google Scholar 

  89. H. H. Teng, P. Fenter, L. Cheng, and N. C. Sturchio, “Resolving Orthoclase Dissolution Processes with Atomic Force Microscopy and X-Ray Reflectivity,” Geochim. Cosmochim. Acta 65, 3459–3474 (2001).

    Article  Google Scholar 

  90. W. J. Ullman, D. L. Kirchman, S. A. Welch, and Ph. Vandervivere, “Laboratory Evidence for Microbially Mediated Silicate Mineral Dissolution in Nature,” Chem. Geol. 132, 11–17 (1996).

    Article  Google Scholar 

  91. B. Ulrich, “Natural and Anthropogenic Components of Soil Acidification,” Z. Pflanzenernaehr. Bodenk. 149, 702–717 (1986).

    Article  Google Scholar 

  92. N. Van Breemen and W. G. Wielemaker, “Buffer Intensities and Equilibrium pH of Minerals and Soils,” Soil Sci. Soc. Am. J. 38(1), 55–70 (1974).

    Article  Google Scholar 

  93. P. A. W. Van Hees, U. S. Lundstrom, R. Giesler, and C.-M. Mörth, “Dissolution of Microcline and Labradorite in a Forest O Horizon Extract: The Effect of Naturally Occurring Organic Acids,” Chem. Geol. 189, 199–211 (2002).

    Article  Google Scholar 

  94. S. A. Welch and W. J. Ullman, “The Effect of Organic Acids on Plagioclase Dissolution Rates and Stoichiometry,” Geochim. Cosmochim. Acta 57(Iss. 12), 2725–2736 (1993).

    Article  Google Scholar 

  95. S. A. Welch and W. J. Ullman, “Feldspar Dissolution in Acidic and Organic Solutions: Compositional and pH Dependence of Dissolution Rate,” Geochim. Cosmochim. Acta 60(16), 2939–2948 (1996).

    Article  Google Scholar 

  96. A. F. White, A. E. Blum, M. S. Schulz, D. D. Bullen, J. W. Harden, and M. L. Peterson, “Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates,” Geochim. Cosmochim. Acta 60(14), 2533–2550 (1996).

    Article  Google Scholar 

  97. A. F. White, A. E. Blum, M. S. Schulz, D. D. Bullen, J. W. Harden, and M. L. Peterson, “Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates,” Geochim. Cosmochim. Acta 60(14), 2533–2550 (1996).

    Article  Google Scholar 

  98. E. Wieland, B. Wehrli, and W. Stumm, “The Coordination Chemistry of Weathering: III. A Generalization on the Dissolution Rates of Minerals,” Geochim. Cosmochim. Acta 52, 1969–1981 (1988).

    Article  Google Scholar 

  99. Li Zhang and A. Lüttge, “Theoretical Approach to Evaluating Plagioclase Dissolution Mechanisms,” Geochim. Cosmochim. Acta 73, 2832–2849 (2009).

    Article  Google Scholar 

  100. Li Zhang and A. Lüttge, “Morphological Evolution of Dissolving Feldspar Particles with Anisotropic Surface Kinetics and Implications for Dissolution Rate Normalization and Grain Size Dependence: A Kinetic Modeling Study,” Geochim. Cosmochim. Acta 73, 6757–6770 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Sokolova.

Additional information

Original Russian Text © T.A. Sokolova, 2013, published in Pochvovedenie, 2013, No. 1, pp. 98–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolova, T.A. The destruction of quartz, amorphous silica minerals, and feldspars in model experiments and in soils: Possible mechanisms, rates, and diagnostics (the analysis of literature). Eurasian Soil Sc. 46, 91–105 (2013). https://doi.org/10.1134/S1064229313010080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313010080

Keywords

Navigation