Skip to main content
Log in

Suboptimal Algorithm for Measuring Pitch Frequency Using Discrete Fourier Transform of a Speech Signal

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—

Starting from the definition of the main tone of the speaker’s speech as the minimum frequency of the linear power spectrum of the vocalized segments of the speech signal, an estimation of potentially achievable accuracy of its measurement under the action of background interference such as white Gaussian noise has been made. Based on this estimation, a suboptimal algorithm for measuring the pitch frequency using a short speech frame has been developed. The developed algorithm effectiveness is confirmed by the results of the experiment, during which the author’s software was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. At the output of the whitening filter, a packet of signal components in the frequency region has a rectangular shape [9].

  2. The concept of the envelope of a fine structure of the speech signal power spectrum or its spectral envelope is widely used in the field of ASP and is described in detail, e.g., in [13].

  3. The program is placed in the open access mode on the website of the authors of the article at the link https://sites.google.com/ site/frompldcreators/produkty-1/phonemetraining.

REFERENCES

  1. L. R. Rabiner and R.W. Shafer, Theory and Applications of Digital Speech Processing (Pearson, Boston, 2011).

    Google Scholar 

  2. D. Hirst and C. Looze, Handbooks in Language and Linguistics (Cambridge Univ. Press, Cambridge, 2021), p. 336.

    Google Scholar 

  3. B. N. Schenkman and V. K. Gidla, Appl. Acoust. 163, Article 107214 (2020). https://doi.org/10.1016/j.apacoust.2020.107214

    Article  Google Scholar 

  4. A. R. Allam, A. S. Ashour, M. A. Elnaby, and F. E. El-Samie, in Proc. 7th Int. Japan-Africa Conf. Electronics, Communications and Computations (JAC-ECC), Alexandria, Egypt, December 15–16, 2019 (IEEE, New York, 2019). https://doi.org/10.1109/JAC-ECC48896.2019.9051338

  5. G. V. Souza, J. M. Duarte, F. Viegas, et al., J. Voice 34 (4), 641 (2020). https://doi.org/10.1016/j.jvoice.2018.12.007

    Article  Google Scholar 

  6. J. Stahl and P. Mowlaee, Speech Commun. 111, 1 (2019). https://doi.org/10.1016/j.specom.2019.05.001

    Article  Google Scholar 

  7. G. Sharma, K. Umapathy, and S. Krishnan, Appl. Acoust. 158, Article No. 107020 (2020). https://doi.org/10.1016/j.apacoust.2020.107338

    Article  Google Scholar 

  8. W. Zhang, R. Wang, Q. Zhang, and S. Fang, Appl. Acoust. 166, Article No. 107338 (2020). https://doi.org/10.1016/j.apacoust.2020.107338

    Article  Google Scholar 

  9. A.V. Savchenko and V. V. Savchenko, Meas. Tech. 65, 453 (2022). https://doi.org/10.1007/s11018-022-02104-6

  10. I. C. Yadav, S. Shahnawazuddin, and G. Pradhan, Digital Signal Process. 86, 55 (2019). https://doi.org/10.1016/j.dsp.2018.12.013

    Article  Google Scholar 

  11. S. Kumar, Int. J. Speech Technol. 22, 885 (2019). https://doi.org/10.1007/s10772-019-09634-5

    Article  Google Scholar 

  12. V. V. Savchenko, Radioelectron. & Commun. Syst. 63, 532 (2020). https://doi.org/10.3103/S0735272720100039

    Article  Google Scholar 

  13. M. Tohyama, Acoustic Signals and Hearing (Acad. Press, Kanagawa, Japan), 89 (2020). https://doi.org/10.1016/B978-0-12-816391-7.00013-9

  14. J. D. Gibson, Information 32 (7) (2016). https://doi.org/10.3390/info7020032

  15. Yu. Gu and H. L. Wei, Inform. Sci. 451–452, 195 (2018). https://doi.org/10.1016/j.ins.2018.04.007

    Article  Google Scholar 

  16. S. Cui, E. Li, and X. Kang, in IEEE Int. Conf. Multimedia and Expo (ICME), United Kingdom, London, 2020 (ICME, 2020), p. 1. https://doi.org/10.1109/ICME46284.2020.9102765

  17. S. R. Smith, J. Acoustical Soc. Amer. 150, Article No. A113 (2021). https://doi.org/10.1121/10.0007806

    Article  Google Scholar 

  18. V. V. Savchenko and A. V. Savchenko, J. Commun. Technol. Electron. 65, 1311 (2020). https://doi.org/10.1134/S1064226920110157

    Article  Google Scholar 

  19. V. V. Savchenko and A. V. Savchenko, Radioelectron. and Commun. Syst. 62 (5), 276 (2019). https://doi.org/10.3103/S0735272719050042

    Article  Google Scholar 

  20. H. B. Kashani and A. Sayadiyan, Comput. Speech & Language 50, 105 (2018). https://doi.org/10.1016/j.csl.2017.12.008

    Article  Google Scholar 

  21. V. V. Savchenko and L. V. Savchenko, J. Commun. Technol. Electron. 66, 1266 (2021). https://doi.org/10.1134/s1064226921110085

    Article  Google Scholar 

  22. R. D. Kent and H. K. Vorperian, J. Commun. Disorders 74, 74 (2018). https://doi.org/10.1016/j.jcomdis.2018.05.004

    Article  Google Scholar 

  23. J. D. Gibson, Information 179 (10) (2019). https://doi.org/10.3390/info10050179

  24. J. D. Markel and A. H. Gray, “Linear Prediction of Speech,” Commun. and Cybernetics 12, (1976). https://doi.org/10.1007/978-3-642-66286-7_8

  25. J. Sueur, Sound Analysis and Synthesis with R.? (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-77647-7_12

    Book  Google Scholar 

  26. M. Esfandiari, S. A. Vorobyov, and M. Karimi, Signal Process. 171, Article No. 107480 (2020). https://doi.org/10.1016/j.sigpro.2020.107480

    Article  Google Scholar 

  27. A. E. Jaramillo, J. K. Nielsen, and M. G. Christensen, in Proc. 27th Eur. Signal Processing Conf. (EUSIPCO), 2019 (EUSIPCO, 2019), p. 1. https://doi.org/10.23919/EUSIPCO.2019.8902763

  28. A. Palaparthi and I. R. Titze, Speech Commun. 123, 98 (2020). https://doi.org/10.1016/j.specom.2020.07.003

    Article  Google Scholar 

  29. Radio-Electronic Systems: Design Basis and Theory: Handbook, Ed. by Ya. D. Shirman, (Radiotekhnika, Moscow, 2007) [in Russian].

    Google Scholar 

  30. R. Sinha and S. Shahnawazuddin, Comput. Speech & Language 48, 103 (2018). https://doi.org/10.1016/j.csl.2017.10.007

    Article  Google Scholar 

  31. J. Zeremdini, M. Messaoud, and A. Bouzid, Appl. Acoust. 120, 45 (2017). https://doi.org/10.1016/j.apacoust.2017.01.013

    Article  Google Scholar 

  32. D. Jouvet and Y. Laprie, in 25th Eur. Signal Processing Conf. (EUSIPCO), 2017 (EUSIPCO, 2017), p. 1614. https://doi.org/10.23919/EUSIPCO.2017.8081482

  33. A. V. Oppenheim and R. W. Schafer, IEEE Signal Process. Mag. 21 (5), 95 (2004). https://doi.org/10.1109/MSP.2004.1328092

    Article  Google Scholar 

  34. S. L. Marple, Digital Spectral Analysis with Applications, 2nd ed. (Dover, Mineola, NewYork, 2019).

  35. C. Parlak and Yu. Altun, Math. Probl. Eng. 2021, Article ID 6658951 (2021). https://doi.org/10.1155/2021/6658951

    Article  Google Scholar 

  36. A. V. Savchenko, V. V. Savchenko, and L. V. Savchenko, Optimiz. Lett., No. 7, 1 (2021). https://doi.org/10.1007/s11590-021-01790-5

  37. D. G. Levkov, A. G. Panin, and I. I. Tkachev, Astrophys. J. 925 (2), 109 (2022). https://doi.org/10.3847/1538-4357/ac3250

    Article  Google Scholar 

  38. A. V. Savchenko and L. V. Savchenko, Meas. Tech. 64, 319 (2021). https://doi.org/10.1007/s11018-021-01935-z

  39. M. B. Akcay and K. Oğuz, Speech Commun. 116, 56 (2020). https://doi.org/10.1016/j.specom.2019.12.001

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 20-71-10010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Savchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, V.V., Savchenko, L.V. Suboptimal Algorithm for Measuring Pitch Frequency Using Discrete Fourier Transform of a Speech Signal. J. Commun. Technol. Electron. 68, 757–764 (2023). https://doi.org/10.1134/S1064226923060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923060128

Navigation