Skip to main content
Log in

Nanocrystal production in the presence of microwave radiation fields

  • Microwave Electronics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A technology of production of nonmetal nanopowders and nanocrystals with characteristic dimensions of about 10 nm in the presence of microwave radiation fields is developed. Specially designed in the National Research Nuclear University (NRNU) MEPhI experimental microwave setup with a power of 5 kW and an operating frequency of 2450 MHz was used as a radiation source. Hydroxides/oxyhydroxides Zr — Y, Dy — Zr, and Dy — Hf placed in a special crucible located in a resonator chamber were used as parent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Ostapyuk, A. A. Shmakov, V. V. Kondakov, et al., Fiz. Khim. Obrab. Mater., No. 3, 5 (2010).

    Google Scholar 

  2. I.-W. Chen and X.-H. Wang, Nature 404(6774), 168 (2000).

    Article  Google Scholar 

  3. A. V. Ragulya, in Proc. 2nd All-Russ. Conf. on Nanomaterials (NANO’2007), Novosibirsk, Mar. 13–16, 2007 (Insit. Khimii Tverd. Tela i Mekhanokhimii Sib. Otd. RAN, Novosibirsk, 2007), p. 42.

    Google Scholar 

  4. V. V. Zyryanov, in Proc. 2nd All-Russ. Conf. on Nanomaterial (NANO’2007), Novosibirsk, Mar. 13–16, 2007 (Insit. Khimii Tverd. Tela i Mekhanokhimii Sib. Otd. RAN, Novosibirsk, 2007), p. 332.

    Google Scholar 

  5. V. V. Ivanov, V. R. Khrustov, A. S. Kaigorodov, et al., in Proc. 2nd All-Russ. Conf. on Nanomaterial (NANO’2007), Novosibirsk, Mar. 13–16, 2007 (Insit. Khimii Tverd. Tela i Mekhanokhimii Sib. Otd. RAN, Novosibirsk, 2007), p. 333.

    Google Scholar 

  6. E. V. Kondratyuk and L. F. Komarova, Ekologiya Prom-st. Rossii, No. 3, 54 (2010).

    Google Scholar 

  7. A. N. Didenko, Microwave Energetics. Theory and Practice (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  8. T. A. Baeraky, Egyptian J. Solids 27(1), 25 (2004).

    Google Scholar 

  9. http://microwavepropertiesnorth.ca/purecompounds/

  10. V. V. Popov, V. F. Petrunin, and S. A. Korovin, Zh. Neorg. Khim. 55, 1604 (2010).

    Google Scholar 

  11. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, Vacuum Microwave Electronics (IPF RAN, Nizhni Novgorod, 2002) [in Russian].

    Google Scholar 

  12. F. A. Lifanov, S. V. Stefanovskii, A. P. Kobelev, et al., Steklo Keram., No. 7, 10 (1991).

    Google Scholar 

  13. F. A. Lifanov, I. A. Sobolev, S. V. Stefanovskii, et al., RF Patent No. 2035073, Byull. Izobret., No. 13 (1995).

    Google Scholar 

  14. M. S. Dmitriev, A. D. Kolyaskin, V. F. Petrunin, et al., At. Energ. 110(1), 27 (2011).

    Article  Google Scholar 

  15. V. F. Petrunin, V. V. Popov, S. A. Korovin, et al., RF Patent No. 2404125, Byull. Izobret., No. 32 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kolyaskin.

Additional information

Original Russian Text © A.N. Didenko, M.S. Dmitriev, A.D. Kolyaskin, R.A. Krasnokutskiy, 2015, published in Radiotekhnika i Elektronika, 2015, Vol. 60, No. 5, pp. 540–544.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, A.N., Dmitriev, M.S., Kolyaskin, A.D. et al. Nanocrystal production in the presence of microwave radiation fields. J. Commun. Technol. Electron. 60, 507–511 (2015). https://doi.org/10.1134/S1064226915030092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226915030092

Keywords

Navigation