Skip to main content
Log in

A composite piezoelectric resonator with a lateral electric field

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A new method of suppressing parasitic oscillations in a piezoelectric resonator with excitation of the transverse electric field is proposed. The method is based on spatial separation of the high-frequency electric field of a source and the resonating piezoelectric plate by means of an air gap. In this case, the tangential components of field in the piezoelectric plate are practically not attenuated, while the normal components are significantly reduced. The method is implemented by means of a composite resonator consisting of a glass plate with rectangular electrodes, an air gap, and a plate of lithium niobate 1of 128 YX cut. It is shown that there is an optimal width of the air gap that provides a good quality of series and parallel resonance in a frequency range of 3–4 MHz with a maximum quality factor of ∼15000 in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. McCann, K. Sgambato, D. F. McCann, and J. Vetelino, Proc. IEEE Int. Utrason. Symp. (2009), pp. 465–648.

    Google Scholar 

  2. T. G. Leblois and C. R. Tellier, Proc. IEEE Int. Ultrason. Symp. (2009), pp. 2672–2675.

    Google Scholar 

  3. J. C. Andle, R. Haskell, M. Chap, and D. Stevens, Proc. IEEE Int. Ultrason. Symp. (2009), pp. 649–654.

    Google Scholar 

  4. D. F. McCann, J. M. McCann, J. M. Parks, D. J. Frankel, M. Pereira da Cunha, and J. F. Vetelino, IEEE Trans. Ultrason., Ferroelectrics, Freq. Contr. 56 (4), 779–787 (2009).

    Article  Google Scholar 

  5. Z. Zhang, W. Wang, T. Ma, C. Zhang, and G. Feng, Proc. IEEE Int. Ultrason. Symp. (2009), pp. 655–658.

    Google Scholar 

  6. C. Zuo, J. Van der Spiegel, and G. Piazza, IEEE Trans. Ultrason., Ferroelectrics, Freq. Contr. 57 (1), 82 (2010).

    Article  Google Scholar 

  7. U. Hempel, R. Lucklum, P. R. Hauptmann, E. P. EerNisse, D. Puccio, and R. Fernandez Diaz,, Meas. Sci. Tech. 19, 1 (2008).

    Article  Google Scholar 

  8. J. F. Vetelino, Proc. IEEE Int. Ultrason. Symp. (2010).

    Google Scholar 

  9. B. D. Zaitsev, I. E. Kuznetsova, A. M. Shikhabudinov, and A. A. Vasiliev, Tech. Phys. Lett. 37 (6) 473 (2011).

    Article  ADS  Google Scholar 

  10. B. D. Zaitsev, I. E. Kuznetsova, A. M. Shikhabudinov, A. A. Teplykh, and I. A. Borodina, IEEE Trans. Ultrason., Ferroelectrics, Freq. Contr. 61 (1), 166 (2014).

    Article  Google Scholar 

  11. A. Ballato, Proc. IEEE/EIA Int. Frequency Control Symp. and Exhibition (2000), pp. 340–344.

    Google Scholar 

  12. I. E. Tamm, Fundamentals of the Theory of Electricity (Nauka, Moscow, 1976; Mir Publishers, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Zaitsev.

Additional information

Original Russian Text © B.D. Zaitsev, A.M. Shikhabudinov, I.A. Borodina, A.A. Teplykh, I.E. Kuznetsova, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 21, pp. 14–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, B.D., Shikhabudinov, A.M., Borodina, I.A. et al. A composite piezoelectric resonator with a lateral electric field. Tech. Phys. Lett. 41, 1030–1033 (2015). https://doi.org/10.1134/S1063785015110140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015110140

Keywords

Navigation