Skip to main content
Log in

Numerical modeling of precessing vortex core in the presence of local heat sources

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Based on the results of numerical simulation of a nonstationary, nonaxisymmetric turbulent swirling gas flow in a tube with local sources of heat release, it is shown that a precessing vortex core (PVC) appears at supercritical values of the swirl parameter as a result of the development of instability of a left-handed bending mode. The dependence of the PVC frequency on the mass flow rate of the gas and the heat-source power has been studied. As the heat-source power increases, the frequency of precession grows while the amplitude of vortex core oscillations drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gupta, D. Lilley, and N. Syred, Swirl Flows (Abakus Press, Kent (UK), 1984; Mir, Moscow, 1987).

    Google Scholar 

  2. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Introduction into Theory of Concentrated Vorticces (Institute of Thermophysics, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  3. Sh. A. Piralishvili, V. M. Polyaev, and M. N. Sergeev, in Vortex Effect: Experiment, Theory, Practice, Ed. by A. I. Leont’ev (UNPTs “Energomash,” Moscow, 2000) [in Russian].

  4. J. H. Kim, Y. C. Hong, H. S. Kim, and H. S. Uhm, J. Korean Phys. Soc. 42, S876 (2003).

    Google Scholar 

  5. E. C. Fernandes, M. V. Heitor, and S. I. Shtork, Combust. Sci. Technol. 175, 1369 (2003).

    Article  Google Scholar 

  6. E. C. Fernandes, M. V. Heitor, and S. I. Shtork, Exp. Fluids 40, 177 (2006).

    Article  Google Scholar 

  7. I. A. Moralev, A. I. Klimov, D. S. Preobrazhenskii, B. N. Tolkunov, and V. A. Kutlaliev, Teplofiz. Vys. Temp. 48(Suppl. 1), 136 (2010).

    Google Scholar 

  8. A. A. Dekterev, A. A. Gavrilov, and A. A. Dekterev, Proceedings of the Int. Conf. “Current Problens in Applied Mathematics and Mechanics: Theory, Experiment and Applications” (May 30–June 4, 2011, Novosibirsk), pp. 1–6 [in Russian].

  9. I. P. Zavershinskii, A. I. Klimov, V. G. Makaryan, N. E. Molevich, I. A. Moralev, and D. P. Porfir’ev, Tech. Phys. Lett. 35, 1152 (2009).

    Article  ADS  Google Scholar 

  10. I. P. Zavershinskii, A. I. Klimov, V. G. Makaryan, I. A. Moralev, N. E. Molevich, and D. P. Porfir’ev, Teplofiz. Vys. Temp. 48(Suppl. 1), 142 (2010).

    Google Scholar 

  11. I. P. Zavershinskii, A. I. Klimov, V. G. Makaryan, I. A. Moralev, N. E. Molevich, and D. P. Porfir’ev, Tech. Phys. Lett. 37, 1120 (2011).

    Article  Google Scholar 

  12. M. S. Uberoi, C. Y. Chow, and J. P. Narain, Phys. Fluids 15, 1718 (1972).

    Article  ADS  MATH  Google Scholar 

  13. M.-H. Yu and P. A. Monkewitz, Phys. Fluids. A 2, 1175 (1990).

    Article  ADS  Google Scholar 

  14. D. W. Lim and L. G. Redekopp, Eur. J. Mech. 17, 165 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. V. Kazakov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 56 (2003).

    Google Scholar 

  16. E. S. Asmolov, A. V. Kazakov, A. F. Kiselev, and D. A. Rus’yanov, Teplofiz. Vys. Temp. 43, 594 (2005).

    Google Scholar 

  17. A. L. Zheleznyakova and S. T. Surzhikov, Physico-Chemical Kinetics in Gasdynamics; www.chemphys.edu.ru/pdf/2008-09-01-034.pdf, pp. 1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Zavershinskii.

Additional information

Original Russian Text © I.P. Zavershinskii, E.Ya. Kogan, V.G. Makaryan, N.E. Molevich, D.P. Porfir’ev, S.S. Sugak, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 7, pp. 34–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavershinskii, I.P., Kogan, E.Y., Makaryan, V.G. et al. Numerical modeling of precessing vortex core in the presence of local heat sources. Tech. Phys. Lett. 39, 333–336 (2013). https://doi.org/10.1134/S1063785013040135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013040135

Keywords

Navigation