Skip to main content
Log in

Effect of electric field on the vapor-phase growth of carbon nanostructures

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A mathematical model of dc gas discharge plasma has been developed in order to determine the electric field strength at a substrate surface during plasmachemical deposition of carbon nanostructures. A numerical solution of the model equations has been obtained using the experimentally determined boundary conditions and model parameters. A comparison of the solution to experiment confirms the adequacy of the proposed mathematical model, which provides the electric field profiles and the electron and ion density distributions near the substrate surface. Estimations show that, for carbon nanostructures with a characteristic size of about 30 nm, the electric field strength at the surface is sufficiently high to provide for their directional growth along the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fan, M. G. Chapline, N. R. Franklin, et al., Science 283, 512 (1999).

    Article  ADS  Google Scholar 

  2. A. N. Obraztsov, I. Yu. Pavlovskiĭ, and A. P. Volkov, Zh. Tekh. Fiz. 127(11), 89 (2001) [Zh. Tekh. Fiz. 46, 1437 (2001)].

    Google Scholar 

  3. A. A. Zolotukhin, A. N. Obraztsov, A. P. Volkov, and A. O. Ustinov, Pis’ma Zh. Tekh. Fiz. 124(9), 58 (2003) [Tech. Phys. Lett. 29, 380 (2003)].

    Google Scholar 

  4. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Pis’ma Zh. Tekh. Fiz. 30(17), 88 (2004) [Tech. Phys. Lett. 30, 750 (2004)].

    Google Scholar 

  5. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  6. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gas (Wiley, New York, 1988).

    Google Scholar 

  7. E. A. Mason and J. T. Vanderslice, Phys. Rev. 114, 497 (1959).

    Article  ADS  Google Scholar 

  8. G. J. M. Hagelaar, F. J. De Hoog, and G. M. W. Kroesen, Phys. Rev. E 62, 1452 (2000).

    Article  ADS  Google Scholar 

  9. H. W. Ellis, R. Y. Pai, E. W. McDaniel, et al., At. Data Nucl. Data Tables 17, 177 (1976).

    Article  ADS  Google Scholar 

  10. BOLSIG Boltzmann Solver for the SIGLO-Series 1.0, CPA, Toulouse & Kinema Sotfware, 1996.

  11. L. C. Pitchford, S. V. O’Neil, and J. R. Rumble, Phys. Rev. A 23, 294 (1981).

    Article  ADS  Google Scholar 

  12. P. Van Der Donk, F. B. Yousif, J. B. A. Mitchell, and A. P. Hickman, Phys. Rev. Lett. 67, 42 (1991).

    Article  ADS  Google Scholar 

  13. FEMLAB Reference Manual (COMSOL AB, Stockholm, 2004).

  14. M. Chhowalla, K. B. K. Teo, C. Ducati, et al., J. Appl. Phys. 90, 5308 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Al.A. Zakhidov, O.A. Klimenko, I.A. Popov, A.A. Zolotukhin, A.N. Obraztsov, 2007, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 33, No. 14, pp. 1–9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakhidov, A.A., Klimenko, O.A., Popov, I.A. et al. Effect of electric field on the vapor-phase growth of carbon nanostructures. Tech. Phys. Lett. 33, 586–589 (2007). https://doi.org/10.1134/S1063785007070140

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785007070140

PACS numbers

Navigation