Skip to main content
Log in

Coulomb explosion of the hot spot of micropinches

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been shown that the generation of hard X-ray radiation, electron beam, and high energy ions that have been detected in experiments on compressing pinches can be related to the Coulomb explosion of a micropinch hot spot, which is formed due to the outflow of the material. In the outflow process, the plasma temperature in the hot spot increases and conditions appear for the transition of electrons to the regime of continuous acceleration. The exit of runaway electrons from the hot spot region leads to the creation of a positive bulk charge, then to a Coulomb explosion. Conditions under which electrons pass to the continuous acceleration regime have been determined and estimates of the ion kinetic energy upon a Coulomb explosion have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  2. M. G. Haines, Plasma Phys. Controlled Fusion 53, 093001 (2011).

    Article  ADS  Google Scholar 

  3. V. V. Aleksandrov, V. A. Gasilov, E. V. Grabovskii, et al., Plasma Phys. Rep. 40, 939 (2014).

    Article  ADS  Google Scholar 

  4. S. A. Chaikovsky, A. Y. Labetsky, V. I. Oreshkin, et al., Laser Part. Beams 21, 255 (2003).

    Article  ADS  Google Scholar 

  5. V. V. Vikhrev and S. I. Braginskii, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1980; Consultants Bureau, New York, 1986), Vol. 10.

  6. A. B. Bud’ko, A. L. Velikovich, M. A. Liberman, and F. S. Felber, Sov. Phys. JETP 69, 76 (1989).

    Google Scholar 

  7. R. B. Baksht, I. M. Datsko, A. A. Kim, et al., Plasma Phys. Rep. 21, 907 (1995).

    ADS  Google Scholar 

  8. D. P. Petrov, N. V. Filippov, T. I. Filippova, and V. A. Khrabrov, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4, p. 170.

    Google Scholar 

  9. N. V. Filippov, T. I. Filippova, and V. P. Vinogradov, Nucl. Fusion Suppl. 2, 571 (1962).

    Google Scholar 

  10. N. V. Filippov and T. I. Filippova, JETP Lett. 25, 241 (1977).

    ADS  Google Scholar 

  11. D. Klir, P. Kubes, K. Rezac, et al., Phys. Rev. Lett. 112, 095001 (2014).

    Article  ADS  Google Scholar 

  12. B. A. Trubnikov, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4, p. 87.

    Google Scholar 

  13. S. A. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, et al., Tech. Phys. Lett. 8, 456 (1982).

    Google Scholar 

  14. G. V. Ivanenkov, S. A. Pikuz, D. B. Sinars, et al., Plasma Phys. Rep. 26, 868 (2000).

    Article  ADS  Google Scholar 

  15. S. A. Pikuz, T. A. Shelkovenko, and D. A. Khammer, Plasma Phys. Rep. 41, 291 (2015).

    Article  ADS  Google Scholar 

  16. V. I. Oreshkin, S. A. Chaikovsky, A. P. Artyomov, et al., Phys. Plasmas 21, 102–711 (2014).

    Google Scholar 

  17. A. A. Rukhadze and U. Yusupaliev, Tech. Phys. 49, 933 (2004).

    Article  Google Scholar 

  18. H. Dreicer, Phys. Rev. 115, 238 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. V. Gurevich, Sov. Phys. JETP 12, 904 (1961).

    Google Scholar 

  20. G. A. Mesyats, Phys. Usp. 49, 1045 (2006).

    Article  ADS  Google Scholar 

  21. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, et al., Phys. Lett. A 375, 2845 (2011).

    Article  ADS  Google Scholar 

  22. E. V. Oreshkin, S. A. Barengolts, S. A. Chaikovsky, and V. I. Oreshkin, Phys. Plasmas 19, 043 105 (2012).

    Google Scholar 

  23. E. V. Oreshkin, S. A. Barengolts, S. A. Chaikovsky, and V. I. Oreshkin, Phys. Plasmas 22, 123 505 (2015).

    Article  Google Scholar 

  24. S. I. Braginskii, Sov. Phys. JETP 6, 494 (1958).

    ADS  MathSciNet  Google Scholar 

  25. A. P. Artyomov, A. V. Fedyunin, S. A. Chaikovskii, et al., Tech. Phys. Lett. 39, 12 (2013).

    Article  ADS  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964, Pergamon, Oxford, 1980).

    Google Scholar 

  27. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gos. Izd. Lit. Atom. Nauke Tekh., Moscow, 1963; Consultants Bureau, New York, 1963), Vol. 1.

  28. A. A. Ivanov, Physics of Highly Nonequilibrium Plasma (Atomizdat, Moscow, 1977).

    Google Scholar 

  29. J. P. Goedbloed, A. I. Pyatak, and V. L. Sizonenko, Sov. Phys. JETP 37, 1051 (1973).

    ADS  Google Scholar 

  30. V. V. Vikhrev, Sov. J. Plasma Phys. 12, 262 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Oreshkin.

Additional information

Original Russian Text © V.I. Oreshkin, E.V. Oreshkin, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 1, pp. 34–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshkin, V.I., Oreshkin, E.V. Coulomb explosion of the hot spot of micropinches. Tech. Phys. 62, 32–36 (2017). https://doi.org/10.1134/S1063784217010169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217010169

Navigation