Skip to main content
Log in

A PL and PLE Study of High Cu Content Cu2ZnSnSe4 Films on Mo/Glass and Solar Cells

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Cu2ZnSnSe4 (CZTSe) is amongst leading candidates for the absorber layer in sustainable solar cells. We examine CZTSe thin films with [Cu]/[Zn + Sn] of 0.99 and [Zn]/[Sn] of 1.07, deposited on Mo/glass substrates, and solar cells fabricated from these films. The bandgap (Eg) of the as deposited films and solar cells was examined by photoluminescence excitation (PLE) whereas the temperature and excitation intensity dependence of photoluminescence (PL) spectra was used to examine the nature of radiative recombination. The 6 K PL spectra of CZTSe/Mo exhibit an intense broad and asymmetrical band P1 at 0.822 eV and a lower intensity band P2 at 0.93 eV. The shape of this band, high rates of blue shift with excitation intensity rise ( j-shift) j(P1) = 14 meV and j(P2) = 8 meV per decade, and red shifts of both bands with increasing temperature suggest that both bands are associated with valence band tails due to potential fluctuations caused by high populations of charged defects. The mean depth of such fluctuation γ of 24 meV was estimated from the low energy side of P1. Device processing increased Eg, blue shifted P1, decreased its width, j-shift and the mean depth of potential fluctuations. These can be due to the annealing and/or can partly be related to KCN etching and the chemical effect of Cd, from CdS replacing copper at the CdS–CZTSe interface layer. Processing induced a new broad band P3 at 1.3 eV (quenching with Ea = 200 meV). We attributed P3 to defects in the CdS layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, Prog. Photovolt. 24, 879 (2016).

    Article  Google Scholar 

  2. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Adv. Energy Mater. 12, 1401372 (2015).

    Article  Google Scholar 

  3. S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Adv. Mater. 25, 1522 (2013).

    Article  Google Scholar 

  4. M. V. Yakushev, M. A. Sulimov, J. Márquez-Prieto, I. Forbes, J. Krustok, P. R. Edwards, V. D. Zhivulko, O. M. Borodavchenko, A. V. Mudryi, and R. W. Martin, Sol. Energy Mater. Sol. Cells 168, 69 (2017).

    Article  Google Scholar 

  5. M. Lang, T. Renz, N. Mathes, M. Neuwirth, T. Schnabel, H. Kalt, and M. Hetterinh, Appl. Phys. Lett. 109, 142103 (2016).

    Article  ADS  Google Scholar 

  6. O. Demircioǔlu, J. F. L. Salas, G. Rey, T. Weiss, M. Mousel, A. Redinger, S. Siebentritt, J. Parisi, and L. Gütay, Opt. Express 25, 5327 (2017).

    Article  ADS  Google Scholar 

  7. E. W. Williams and H. B. Bebb, Semiconductors and Semimetals (Academic, New York, 1972).

    Google Scholar 

  8. M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, Thin Solid Films 517, 2489 (2009).

    Article  ADS  Google Scholar 

  9. S. Oueslati, G. Brammertz, M. Buffiere, C. Koble, T. Oualid, M. Meuris, and J. Poortmans, Sol. Energy Mater. Sol. Cells 134, 340 (2015).

    Article  Google Scholar 

  10. J. Márquez-Prieto, M. V. Yakushev, I. Forbes, J. Krustok, V. D. Zhivulko, P. R. Edwards, M. Dimitrievska V. Izquerdo-Roca, N. M. Pearsall, A. V. Mudryi, and R. W. Martin, Sol. Energy Mater. Sol. Cells 152, 42 (2016).

    Article  Google Scholar 

  11. A. R. G. Rey, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, Appl. Phys. Lett. 105, 112106 (2014).

    Article  ADS  Google Scholar 

  12. C. Krämmer, C. Huber, C. Zimmermann, M. Lang, T. Schnabel, T. Abzieher, E. Ahlswede, H. Kalt, and M. Hetterich, Appl. Phys. Lett. 105, 262104 (2014).

    Article  ADS  Google Scholar 

  13. D. Tiwari, E. Skidchenko, J. W. Bowers, M. V. Yakushev, R. W. Martin, and D. J. Fermin, J. Mater. Chem. C 5, 12720 (2017).

    Article  Google Scholar 

  14. J. Márquez, M. Neuschitzer, M. Dimitrievska, R. Gunder, S. Haass, M. Werner, Y. E. Romanyuk, S. Schorr, N. M. Pearsall, and I. Forbes, Sol. Energy Mater. Sol. Cells 144, 579 (2016).

    Article  Google Scholar 

  15. M. V. Yakushev, J. Márquez-Prieto, I. Forbes, P. R. Ed-wards, V. D. Zhivulko, A. V. Mudryi, J. Krustok, and R. W. Martin, J. Phys. D 48, 475109 (2015).

    Article  ADS  Google Scholar 

  16. A. P. Levanyuk and V. V. Osipov, Sov. Phys. Usp. 24, 187 (1987).

    Article  ADS  Google Scholar 

  17. J. Krustok, H. Collan, M. Yakushev, and K. Hjelt, Phys. Scr. 79, 179 (1999).

    Article  Google Scholar 

  18. M. Grossberg, P. Salu, J. Raudoja, and J. Krustok, J. Photon. Energy 3, 030599 (2013).

    Article  Google Scholar 

  19. J. Mattheis, U. Rau, and I. H. Werner, J. Appl. Phys. 101, 113519 (2007).

    Article  ADS  Google Scholar 

  20. B. Shklovskii and A. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  21. T. Gokmen, O. Ganawan, T. K. Todorov, and D. B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013).

    Article  ADS  Google Scholar 

  22. S. Siebentritt, N. Papathanasioua, and M. Ch. Lux-Steiner, Phys. B (Amsterdam, Neth.) 376377, 831 (2006).

  23. J. P. Teixeira, R. A. Sousa, M. G. Sousa, A. F. Cunha, P. A. Fernandes, P. M. P. Salome, and J. P. Leitao, Phys. Rev. B 90, 235202 (2014).

    Article  ADS  Google Scholar 

  24. C. Persson, J. Appl. Phys. 107, 053710 (2010).

    Article  ADS  Google Scholar 

  25. K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).

    Article  ADS  Google Scholar 

  26. M. E. White, K. P. O’Donnell, R. W. Martin, S. Pe-reira, C. J. Deatcher, and I. M. Watson, Mater. Sci. Eng. B 93, 147 (2002).

    Article  Google Scholar 

  27. T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).

    Article  ADS  Google Scholar 

  28. A. Jagomagi, J. Krustok, J. Raudoja, M. Grossberg, M. Danilson, and M. Yakushev, Phys. B (Amsterdam, Neth.) 337, 369 (2003).

  29. J. Krustok, H. Collan, and K. Hjelt, J. Appl. Phys. 81, 1442 (1997).

    Article  ADS  Google Scholar 

  30. M. Paris, L. Choubrac, A. Lafond, C. Guillot-Deudon, and S. Jobic, Inorg. Chem. 53, 8646 (2014).

    Article  Google Scholar 

  31. D. Huang and C. Persson, Thin Solid Films 535, 265 (2013).

    Article  ADS  Google Scholar 

  32. M. Bar, I. Repins, L. Weinhardt, J.-H. Alsmeier, S. Pookpanratana, M. Blum, W. Yang, C. Heske, R. G. Wilks, and R. Noufi, ACS Energy Lett. 2, 1632 (2017).

    Article  Google Scholar 

  33. T. Maeda, S. Nakamura, and T. Wada, Jpn. J. Appl. Phys. 51, 10NC11 (2012).

    Article  Google Scholar 

  34. S. Ranjbar, G. Brammertz, B. Vermang, A. Hadipour, M. Sylvester, A. Mule, M. Meuris, A. F. Cunha, and J. Poortmans, Thin Solid Films 633, 127 (2017).

    Article  ADS  Google Scholar 

  35. M. I. Amal and K. H. Kim, Chalcogenide Lett. 9, 345 (2012).

    Google Scholar 

  36. W. K. Metzger, R. K. Ahrenkiel, J. Dashdorj, and D. J. Friedman, Phys. Rev. B 71, 035301 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation (grant 17-12-01500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sulimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulimov, M.A., Yakushev, M.V., Forbes, I. et al. A PL and PLE Study of High Cu Content Cu2ZnSnSe4 Films on Mo/Glass and Solar Cells. Phys. Solid State 61, 908–917 (2019). https://doi.org/10.1134/S1063783419050214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050214

Navigation