Skip to main content
Log in

Spectral Properties and Thermal Quenching of Mn4+ Luminescence in Silicate Garnet Hosts CaY2MgMAlSi2O12 (M = Al, Ga, Sc)

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Multi-component silicate garnet ceramics CaY2MgMAlSi2O12 comprising different cations M = Al, Ga or Sc in octahedral sites doped with Mn4+ ions have been synthesized and studied as novel red-emitting phosphors aiming at warm white pc-LED applications. All synthesized phosphors exhibit Mn4+ luminescence in rather deep red region, the shortest-wavelength spectrum of Mn4+ luminescence (peak wavelength at 668 nm) being obtained for the host with the largest cation M3+ = Sc3+ in the octahedral site. The effect of increasing the energy of the emitting Mn4+2E level with the size of the host cation in octahedral sites is supposed to be the result of decrease of the covalence of the “Mn4+-ligand” bonding with increase of the interionic Mn4+–O2– distance. All studied phosphors demonstrate rather poor thermal stability of Mn4+ photoluminescence with a thermal quenching temperature T1/2 below 200 K, the lowest value being observed for the host with M = Sc. As expected, the decrease of the energy of the O2––Mn4+ charge-transfer state is observed with the increase of the M3+ cation radius, i.e. with the increase of the O2––Mn4+ interionic distance. The thermal quenching temperature of Mn4+ luminescence in the studied phosphors correlates with the energy of the O2––Mn4+ charge transfer state which is supposed to serve as a quenching state for Mn4+ luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Y.-C. Lin, M. Karlsson, and M. Bettinelli, Top. Curr. Chem. (Z) 374, 21 (2016).

    Article  Google Scholar 

  2. A. G. Paulusz, J. Electrochem. Soc. 120, 942 (1973).

    Article  Google Scholar 

  3. Q. Zhou, L. Dolgov, A. M. Srivastava, L. Zhou, Z. Wang, J. Shi, M. D. Dramićanin, M. G. Brik, and M. Wu, J. Mater. Chem. C 6, 2652 (2018).

    Article  Google Scholar 

  4. K. Petermann and G. Huber, J. Lumin. 31–32, 71 (1984).

    Article  Google Scholar 

  5. T. Jansen, J. Gorobez, M. Kirm, M. G. Brik, S. Vielhauer, M. Oja, N. M. Khaidukov, V. N. Makhov, and T. Jüstel, ECS J. Solid State Sci. Technol. 7, R3086 (2018).

    Article  Google Scholar 

  6. T. Jansen, T. Jüstel, M. Kirm, S. Vielhauer, N. M. Khaidukov, and V. N. Makhov, J. Lumin. 198, 314 (2018).

    Article  Google Scholar 

  7. T. Jansen, T. Jüstel, M. Kirm, J. Kozlova, H. Mändar, S. Vielhauer, N. M. Khaidukov, and V. N. Makhov, Opt. Mater. 84, 600 (2018).

    Article  ADS  Google Scholar 

  8. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  ADS  Google Scholar 

  9. S. I. Omelkov, V. Kiisk, I. Sildos, M. Kirm, V. Nagirnyi, V. A. Pustovarov, L. I. Isaenko, and S. I. Lobanov, Rad. Meas. 56, 49 (2013).

    Article  Google Scholar 

  10. I. Romet, E. Aleksanyan, M. G. Brik, G. Corradi, A. Kotlov, V. Nagirnyi, and K. Polgár, J. Lumin. 177, 9 (2016).

    Article  Google Scholar 

  11. N. M. Khaidukov, M. Kirm, E. Feldbach, H. Mägi, V. Nagirnyi, E. Tõldsepp, S. Vielhauer, T. Jüstel, T. Jansen, and V. N. Makhov, J. Lumin. 191, 51 (2017).

    Article  Google Scholar 

  12. K. A. Müller, Phys. Rev. Lett. 2, 341 (1959).

    Article  ADS  Google Scholar 

  13. S. K. Misra, Appl. Magn. Res. 10, 193 (1996).

    Article  Google Scholar 

  14. D. V. Azamat, A. Dejneka, J. Lancok, V. A. Trepakov, L. Jastrabik, and A. G. Badalyan, J. Appl. Phys. 111, 104119 (2012).

    Article  ADS  Google Scholar 

  15. R. K. Moore, W. B. White, and T. V. Long, Am. Miner. 56, 54 (1971).

  16. N. M. Khaidukov, I. A. Zhidkova, N. Yu. Kirikova, V. N. Makhov, Q. Zhang, R. Shi, and H. Liang, Dyes Pigm. 148, 189 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to P. Ritslaid for performing WDXRF analysis of the studied ceramics.

Funding

This research was performed within the ERA. Net RUS Plus Programme, project NANOLED no. 361. Financial support from Russian Foundation for Basic Research (grant nos. 16-52-76028 ERA_a and 16-53-76027 ERA_a), Estonian Research Council (NANOLED) and BMBF (Germany, grant no. 01DJ16004) is gratefully acknowledged by the Moscow, Tartu and Münster groups. The Tartu group also acknowledges financial support from the ERDF funding in Estonia granted to the Center of Excellence TK141 (project no. 2014–2020.4.01.15-0011) and from the Estonian Research Council grant PUT RG111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Makhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirm, M., Oja, M., Kozlova, J. et al. Spectral Properties and Thermal Quenching of Mn4+ Luminescence in Silicate Garnet Hosts CaY2MgMAlSi2O12 (M = Al, Ga, Sc). Phys. Solid State 61, 853–859 (2019). https://doi.org/10.1134/S1063783419050147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050147

Navigation