Skip to main content
Log in

Investigation of Spectral Properties of Potassium Aluminoborate Glasses Doped with Chromium

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Spectral properties of potassium aluminoborate glasses activated by various concentrations of trivalent chromium compounds are studied. The temperatures of glass transition (434°C) and bulk crystallization of the glass matrix (600°C) are determined. The heat treatment of the glass at the crystallization temperature results in the appearance of intensive narrow luminescence bands in the area of 685–715 nm that is connected with the crystallization of the LiAl7B4O17:Cr3+ phase in the glass matrix; in this phase chromium is located in a highly symmetrical octahedral surrounding. Concentration dependences of lifetime and quantum yield show the existence of the concentration luminescence quenching at increasing chromium content in the glass from 0.05 to 0.2 mol %. The maximum value of quantum yield is 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. B. Meinel, Sol. Energy Mater. Sol. Cells 32, 327 (1994).

    Article  Google Scholar 

  2. M. A. Baldo, Opt. Eng. 20, 887 (1981).

    Google Scholar 

  3. R. L. Hammond and C. E. Backus, Renewable Energy 5, 268 (1994).

    Article  Google Scholar 

  4. R. Reisfeld and C. K. Jorgensen, Struct. Bond. 49, 1 (1982).

    Article  Google Scholar 

  5. W. H. Weber and J. Lambe, Appl. Opt. 15, 2299 (1976).

    Article  ADS  Google Scholar 

  6. J. S. Batchelder, A. H. Zewai, and T. Cole, Appl. Opt. 18, 3090 (1979).

    Article  ADS  Google Scholar 

  7. J. S. Batchelder, A. H. Zewail, and T. Cole, Appl. Opt. 20, 3733 (1981).

    Article  ADS  Google Scholar 

  8. L. R. Wilson and B. S. Richards, Appl. Opt. 48, 212 (2009).

    Article  ADS  Google Scholar 

  9. R. Reisfeld and Y. Kalisky, Chem. Phys. Lett. 80, 178 (1981).

    Article  ADS  Google Scholar 

  10. R. Reisfeld and L. Boehm, J. Non. Cryst. Solids 16, 83 (1974).

    Article  ADS  Google Scholar 

  11. A. van Die, A. J. Faber, G. Blasse, and W. F. van der Weg, J. Phys. Chem. Solids 47, 1081 (1986).

    Article  ADS  Google Scholar 

  12. G. Folcher, N. Keller, and J. Paris, Sol. Energy Mater. 10, 303 (1984).

    Article  ADS  Google Scholar 

  13. R. Reisfeld, A. Kisilev, and E. Greenberg, Chem. Phys. Lett. 104, 2 (1984).

    Article  Google Scholar 

  14. N. Saad, M. Haouari, A. Bulou, A. Hadi Kassiba, and H. Ben Ouada, Mater. Chem. Phys. 212, 461 (2018).

    Article  Google Scholar 

  15. A. van Die, G. Blasse, and W. F. van der Weg, Mater. Chem. Phys. 14, 513 (1986).

    Article  Google Scholar 

  16. N. Neuroth and R. Haspel, Sol. Energy Mater. 16, 235 (1987).

    Article  Google Scholar 

  17. C. J. Ballhausen, Q. Rev. Chem. Soc. 5, 373 (1971).

    Google Scholar 

  18. A. Kisilev and R. Reisfeld, Sol. Energy 33, 163 (1984).

    Article  ADS  Google Scholar 

  19. L. J. Andrews, A. Lempicki, and B. C. McCollum, J. Chem. Phys. 74, 5526 (1981).

    Article  ADS  Google Scholar 

  20. A. Kisilev, R. Reisfeld, E. Greenber, A. Buch, and M. Ish-Shalom, Chem. Phys. Lett. 105, 405 (1984).

    Article  ADS  Google Scholar 

  21. D. F. Nelson and M. D. Sturge, Phys. Rev. A 137, 4 (1965).

    Article  Google Scholar 

  22. R. C. Powell, L. Xi, and X. Gang, Phys. Rev. A 32, 2788 (1985).

    Google Scholar 

  23. A. N. Babkina, A. D. Gorbachev, K. S. Zyryanova, N. V. Nikonov, R. K. Nuryev, and S. A. Stepanov, Opt. Spectrosc. 123, 369 (2017).

    Article  ADS  Google Scholar 

  24. C. Koepke, K. Wisniewski, M. Grinberg, and G. H. Beall, Spectrochim. Acta, Part A 54, 1725 (1998).

    Article  ADS  Google Scholar 

  25. C. Koepke, K. Wisniewski, M. Grinberg, and F. Rozploch, Analysis 14, 11553 (2002).

    Google Scholar 

  26. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Phys. Solid State 42, 857 (2000).

    Article  ADS  Google Scholar 

  27. A. A. Kaplyanskii, A. B. Kulinkin, S. P. Feofilov, R. I. Zakharchenya, and T. N. Vasilevskaya, Phys. Solid State 40, 1310 (1998).

    Article  ADS  Google Scholar 

Download references

FUNDING

The reported study was funded by RFBR according to the research project No. 18-33-00780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Babkina.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonova, D.A., Babkina, A.N., Zyryanova, K.S. et al. Investigation of Spectral Properties of Potassium Aluminoborate Glasses Doped with Chromium. Phys. Solid State 61, 826–829 (2019). https://doi.org/10.1134/S1063783419050032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050032

Navigation