Skip to main content
Log in

Two-band superconductivity of Sn1–x In x Te crystals with T c = 3.6–3.8 K

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Andreev reflection spectra of high-quality superconducting Sn1–x In x Te crystals with critical temperature T c = 3.6–3.8 K were examined. The two-band nature of the superconducting state of this compound was established. The energy gaps have s-symmetry and were measured to be 2Δ1/kT c = 3.5 ± 0.9 and 2Δ2/kT c = 7 ± 1. Neither of the contacts with a resistance of 1.5–23 Ω revealed a peak at zero voltage typical of the topological superconducting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nature Phys. 8, 800 (2012).

    Article  ADS  Google Scholar 

  2. L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  3. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).

    Article  ADS  Google Scholar 

  4. P. B. Allen and M. L. Cohen, Phys. Rev. 177, 704 (1969).

    Article  ADS  Google Scholar 

  5. G. S. Bushmarina, I. A. Drabkin, V. V. Kompaniets, P. B. Parfen’ev, D. B. Shamshup, and M. A. Shakhov, Sov. Phys. Solid State 28, 612 (1986).

    Google Scholar 

  6. M. Novak, S. Sasaki, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. B 88, 140502(R) (2013).

    Article  ADS  Google Scholar 

  7. G. Balakrishnan, L. Bawden, S. Cavendish, and M. R. Lees, Phys. Rev. B 87, 140507(R) (2013).

    Article  ADS  Google Scholar 

  8. C. M. Polley, V. Jovic, T.-Y. Su, M. Saghir, D. Newby, Jr., B. J. Kowalski, R. Jakiela, A. Barcz, M. Guziewicz, T. Balasubramanian, G. Balakrishnan, J. Laverock, and K. E. Smith, Phys. Rev. B 93, 075132 (2016).

    Article  ADS  Google Scholar 

  9. X.-L. Qi, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  10. Y. Tanaka, K. Nakayama, S. Souma, T. Sato, N. Xu, P. Zhang, P. Richard, H. Ding, Y. Suzuki, P. Das, K. Kadowaki, and T. Takahashi, Phys. Rev. B 85, 125111 (2012).

    Article  ADS  Google Scholar 

  11. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).

    Article  ADS  Google Scholar 

  12. H. Peng, D. De, B. Lv, F. Wei, and C.-W. Chu, Phys. Rev. B 88, 024515 (2013).

    Article  ADS  Google Scholar 

  13. N. Levy, T. Zhang, J. Ha, F. Sharifi, A. A. Talin, Y. Kuk, and J. A. Stroscio, Phys. Rev. Lett. 110, 117001 (2013).

    Article  ADS  Google Scholar 

  14. E. Kirzhner, E. Lahoud, K. B. Chaska, Z. Salman, and A. Kanigel, Phys. Rev. B 86, 064517 (2012).

    Article  ADS  Google Scholar 

  15. X. Chen, C. Huan, Y. S. Hor, C. A. R. Sa de Melo, and Z. Jiang, arXiv:1210.6054 [cond-mat] (2012).

    Google Scholar 

  16. S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Phys. Rev. Lett. 109, 217004 (2012).

    Article  ADS  Google Scholar 

  17. A. Yamakage, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev. B 85, 180509(R) (2012).

    Article  ADS  Google Scholar 

  18. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005).

    Article  ADS  Google Scholar 

  19. G. Sheet, S. Mukhopadhyay, and P. Raychaudhuri, Phys. Rev. B 69, 134507 (2004).

    Article  ADS  Google Scholar 

  20. C. W. J. Beenakker, Phys. Rev. B 46, 12841(R) (1992).

    Article  ADS  Google Scholar 

  21. L. Y. L. Shen and J. M. Rowell, Phys. Rev. 165, 566 (1968).

    Article  ADS  Google Scholar 

  22. S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000).

    Article  ADS  Google Scholar 

  23. Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

    ADS  Google Scholar 

  24. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  25. D. Daghero and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010).

    Article  ADS  Google Scholar 

  26. M. Kriener, K. Segawa, Z. Ren, S. Sasaki, S. Wada, S. Kuwabata, and Y. Ando, Phys. Rev. B 84, 054513 (2011).

    Article  ADS  Google Scholar 

  27. J. A. Schneeloch, R. D. Zhong, Z. J. Xu, G. D. Gu, and J. M. Tranquada, Phys. Rev. B 91, 144506 (2015).

    Article  ADS  Google Scholar 

  28. T. Hashimoto, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev. B 92, 174527 (2015).

    Article  ADS  Google Scholar 

  29. N. Haldolaarachchige, Q. Gibson, W. Xie, M. B. Nielsen, S. Kushwaha, and R. J. Cava, Phys. Rev. B 93, 024520 (2016).

    Article  ADS  Google Scholar 

  30. L. P. Zhang, J. Pan, X. C. Hong, S. Y. Zhou, and S. Y. Li, Phys. Rev. B 88, 014523 (2013).

    Article  ADS  Google Scholar 

  31. M. Saghir, J. A. T. Barker, G. Balakrishnan, A. D. Hiller, and M. R. Lees, Phys. Rev. B 90, 064508 (2014).

    Article  ADS  Google Scholar 

  32. R. D. Zhong, J. A. Schneeloch, X. Y. Shi, Z. J. Xu, C. Zhang, J. M. Tranquada, Q. Li, and G. D. Gu, Phys. Rev. B 88, 020505(R) (2013).

    Article  ADS  Google Scholar 

  33. J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Nat. Mater. 13, 178 (2014).

    Article  ADS  Google Scholar 

  34. I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, and V. Madhavan, Nat. Mater. 14, 318 (2015).

    Article  ADS  Google Scholar 

  35. R. S. Gonnelli, D. Daghero, G. A. Ummarino, V. A. Stepanov, J. Jun, S. M. Kazakov, and J. Karpinski, Phys. Rev. Lett. 89, 247004 (2002).

    Article  ADS  Google Scholar 

  36. D. Daghero, A. Calzolari, G. A. Ummarino, M. Tortello, R. S. Gonnelli, V. A. Stepanov, C. Tarantini, P. Manfrinetti, and E. Lehmann, Phys. Rev. B 74, 174519 (2006).

    Article  ADS  Google Scholar 

  37. D. L. Bashlakov, Y. G. Naidyuk, I. K. Yanson, S. C. Wimbush, B. Holzapfel, G. Fuchs, and S.-L. Drechsler, Supercond. Sci. Technol. 18, 1094 (2005).

    Article  ADS  Google Scholar 

  38. D. Daghero, M. Tortello, R. S. Gonnelli, V. A. Stepanov, N. D. Zhigadlo, and J. Karpinski, Phys. Rev. B 80, 060502 (2009).

    Article  ADS  Google Scholar 

  39. R. S. Gonnelli, D. Daghero, and M. Tortello, Curr. Opin. Solid State Mater. Sci. 17, 72 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Stepanov.

Additional information

Original Russian Text © Yu.I. Gorina, M.V. Golubkov, T.I. Osina, V.V. Rodin, N.N. Sentyurina, S.G. Chernook, V.A. Stepanov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 10, pp. 1897–1904.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorina, Y.I., Golubkov, M.V., Osina, T.I. et al. Two-band superconductivity of Sn1–x In x Te crystals with T c = 3.6–3.8 K. Phys. Solid State 59, 1918–1925 (2017). https://doi.org/10.1134/S1063783417100171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417100171

Navigation