Skip to main content
Log in

Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure and stability of a two-layer defective silicene on Ag(001) and Ag(111) substrates have been investigated using the molecular dynamics method. The transformation of the radial distribution function of silicene due to the formation of monovacancies, divacancies, trivacancies, and hexavacancies is reduced primarily to a decrease in the intensity of the peaks and the disappearance of the “shoulder” in the second peak. With the passage of time, multivacancies can undergo coalescence with each other and the fragmentation into smaller vacancies, as well as form vacancy clusters. According to the geometric criterion, the Ag(001) substrate provides a higher stability of a perfect two-layer silicene. It has been found, however, that the defective silicene on this substrate has a lower energy only when it contains monovacancies and divacancies. A change in the size of defects leads to a change in the energy priority when choosing between the Ag(001) and Ag(111) substrates. The motion of a lithium ion inside an extended channel between two silicene sheets results in a further disordering of the defective structure of the silicene, during which the strongest stresses in the silicene are generated by forces directed perpendicular to the external electric field. These forces dominate in the silicene channel, the wall of which is supported by the Ag(001) or Ag(111) substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vogt, P. de Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. le Lay, Phys. Rev. Lett. 108, 155501 (2012).

    Article  ADS  Google Scholar 

  2. B. J. Feng, Z. Ding, Sh. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012).

    Article  ADS  Google Scholar 

  3. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).

  4. L. Meng, Y. Wang, L. Zhang, Sh. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H.-J. Gao, Nano Lett. 13, 685 (2013).

    Article  ADS  Google Scholar 

  5. M. R. Tchalala, H. Enriquez, A. J. Mayne, A. Kara, S. Roth, M. G. Silly, A. Bendounan, F. Sirotti, T. Greber, B. Aufray, G. Dujardin, M. A. Ali, and H. Oughaddou, Appl. Phys. Lett. 102, 083107 (2013).

    Article  ADS  Google Scholar 

  6. G. le Lay, B. Aufray, C. Léandri, H. Oughaddou, J.-P. Biberian, P. de Padova, M. E. Dávila, B. Ealet, and A. Kara, Appl. Surf. Sci. 256, 524 (2009).

    Article  ADS  Google Scholar 

  7. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  Google Scholar 

  8. A. E. Galashev, Tech. Phys. 59 (4), 467 (2014).

    Article  Google Scholar 

  9. J. F. Gao, J. F. Zhang, H. S. Liu, Q. Zhang, and J. Zhao, Nanoscale 5, 9785 (2013).

    Article  ADS  Google Scholar 

  10. V. O. Özçelik, H. H. Gurel, and S. Ciraci, Phys. Rev. B: Condens. Matter 88 (4), 045440 (2013).

    Article  ADS  Google Scholar 

  11. A. E. Galashev and O. R. Rakhmanova, Phys.—Usp. 57 (10), 970 (2014).

    Article  ADS  Google Scholar 

  12. W. Hu, X. Wu, Z. Li, and J. Yang, Nanoscale 5, 9062 (2013).

    Article  ADS  Google Scholar 

  13. A. Ambrosetti and P. L. Silvestrelli, J. Phys. Chem. C 118, 19172 (2014).

    Article  Google Scholar 

  14. G. R. Berdiyorov and F. M. Peeters, RSC Adv. 4, 1133 (2014).

    Article  Google Scholar 

  15. H. Jamgotchian, Y. Colignon, B. Ealet, B. Parditka, J.-Y. Hoarau, C. Girardeaux, B. Aufray, and J.-P. Bibérian, J. Phys.: Conf. Ser. 491, 012001 (2014).

    Google Scholar 

  16. S. Li, Y. Wu, Y. Tu, Y. Wang, T. Jiang, W. Liu, and Y. Zhao, Sci. Rep. 5, 7881 (2015).

    Article  ADS  Google Scholar 

  17. T. H. Osborn and A. A. Farajian, J. Phys. Chem. C 116, 22916 (2012).

    Article  Google Scholar 

  18. J. Tersoff, Phys. Rev. B: Condens. Matter 49, 16349 (1994).

    Article  ADS  Google Scholar 

  19. A. E. Galashev, O. R. Rakhmanova, and Yu. P. Zaikov, Phys. Solid State 58 (9), 1850 (2016).

    Article  ADS  Google Scholar 

  20. R. Yu, P. Zhai, G. Li, and L. Liu, J. Electron. Mater. 41, 1465 (2012).

    Article  ADS  Google Scholar 

  21. K.-N. Chiang, C.-Y. Chou, C.-J. Wu, C.-J. Huang, and M.-C. Yew, in Proceedings of the International Conference on Computer Engineering and Systems (ICCES 2009), Cairo, Egypt, December 14–16, 2009, p 130.

    Google Scholar 

  22. S. K. Das, D. Roy, and S. J. Sengupta, J. Phys. F: Met. Phys. 7, 5 (1977).

    Article  ADS  Google Scholar 

  23. J. R. Bordin, Phys. A (Amsterdam, Neth.) 459, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Kawahara, T. Shirasawa, R. Arafune, C.-L. Lin, T. Takahashi, M. Kawai, and N. Takagi, Surf. Sci. 623, 25 (2014).

    Article  ADS  Google Scholar 

  25. R. Wang, S. Wang, and X. Wu, arXiv:1305.4789v2 [cond-mat.meshall] 23 May 2013. http://www.researchgate.net/publication/236871722.

  26. B. Peng, F. Cheng, and Z. Tao, J. Chen. Chem. Phys. 133, 034701 (2010).

    Article  ADS  Google Scholar 

  27. K. Müller, F. F. Krause, A. Béché, M. Schowalter, V. Galioit, S. Löffler, J. Verbeeck, J. Zweck, P. Schattschneider, and A. Rosenauer, Nat. Commun. 5, 5653 (2014).

    Article  Google Scholar 

  28. A. E. Galashev and V. A. Polukhin, Phys. Met. Metallogr. 115 (7), 697 (2014).

    Article  ADS  Google Scholar 

  29. A. E. Galashev, Phys. Met. Metallogr. 117 (3), 238 (2016).

    Article  ADS  Google Scholar 

  30. S. J. Plimpton, Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  31. M. R. Chavez-Castillo, M. A. Rodriguez-Meza, and L. Meza-Montes, Rev. Mex. Fis. 58, 139 (2012).

    Google Scholar 

  32. F. H. Stillinger and T. A. Weber, Phys. Rev. B: Condens. Matter. 31, 5262 (1985).

    Article  ADS  Google Scholar 

  33. G. L. Lay, www.uv.es/wsetld/archivos/Monday/ws10-Le-Lay.pdf.

  34. A. E. Galashev and V. A. Polukhin, Russ. J. Phys. Chem. A 88 (6), 995 (2014).

    Article  Google Scholar 

  35. A. E. Galashev and V. A. Polukhin, Phys. Solid State 55 (8), 1733 (2013).

    Article  ADS  Google Scholar 

  36. A. E. Galashev and A. A. Galasheva, High Energy Chem. 48 (2), 112 (2014).

    Article  Google Scholar 

  37. A. E. Galashev, I. A. Izmodenov, A. N. Novruzov, and O. A. Novruzova, Semiconductors 41 (2), 190 (2007).

    Article  ADS  Google Scholar 

  38. A. E. Galashev, V. A. Polukhin, I. A. Izmodenov, and O. R. Rakhmanova, Glass Phys. Chem. 32 (1), 99 (2006).

    Article  Google Scholar 

  39. M. A. Ledina, X. Liang, Y. G. Kim, J. Jung, B. Perdue, C. Tsang, M. P. Soriaga, and J. L. Stickney, ECS Trans. 66 (6) 129 (2015).

    Article  Google Scholar 

  40. T. P. Kaloni, M. Tahir, and U. Schwingenschlögl, Sci. Rep. 3, 3192 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, K.A. Ivanichkina, A.S. Vorob’ev, O.R. Rakhmanova, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 6, pp. 1218–1227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Ivanichkina, K.A., Vorob’ev, A.S. et al. Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment. Phys. Solid State 59, 1242–1252 (2017). https://doi.org/10.1134/S1063783417060087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417060087

Navigation