Skip to main content
Log in

Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The evolution of the surface morphology of diamond particles synthesized by chemical vapor deposition (CVD) on silicon substrates has been investigated. It has been found that, when the diamond particles reach a critical size of less than 800 nm, the surface of the diamond faces is transformed. Particles with sizes of no more than 100–300 nm have a well-faceted surface covered by the {100} and {111} faces. An increase in the size of diamond particles leads to a change in the structure of their surface. The surface is covered by the {100} faces surrounded by a disordered phase. With a further increase in the particle size (up to ∼2000 nm), the {100} faces disappear and the diamond particles are covered by high-index faces. A model explaining the evolution of the surface morphology of diamond particles has been proposed. According to this model, during the evolution of diamond particles with an increase in their size, the mechanism of layer-bylayer growth changes to normal growth, which leads to a significant transformation of the entire surface of the diamond particles. The critical size of a two-dimensional nucleus formed on the {100} and {111} faces, at which the change in the growth mechanism begins to occur, has been calculated. A method has been proposed for controlling the morphology of diamond particles during their synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Nemanich, J. A. Carlisle, A. Hirata, and K. Haenen, MRS Bull. 39, 490 (2014).

    Article  Google Scholar 

  2. J. J. Gracio, Q. H. Fan, and J. C. Madaleno, J. Phys. D: Appl. Phys. 43, 374017 (2010).

    Article  Google Scholar 

  3. T. Teraji, Phys. Status Solidi A 203, 3324 (2006).

    Article  ADS  Google Scholar 

  4. S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Ya. Vul’, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).

    Article  ADS  Google Scholar 

  5. M. Nesládek, D. Tromson, C. Mer, P. Bergonzo, P. Hubik, and J. Mares, Appl. Phys. Lett. 88, 232111 (2006).

    Article  ADS  Google Scholar 

  6. S. Yamasaki, E. Gheeraert, and Y. Koide, MRS Bull. 39, 499 (2014).

    Article  Google Scholar 

  7. H. Liu and D. S. Dandy, Diamond Relat. Mater. 4, 1173 (1995).

    Article  ADS  Google Scholar 

  8. J. E. Butler, Y. A. Mankelevich, A. Cheesman, J. Ma, and M. N. R. Ashfold, J. Phys.: Condens. Matter 21, 364201 (2009).

    Google Scholar 

  9. D. V. Fedoseev, V. P. Varnin, and B. V. Deryagin, Usp. Khim. 53, 753 (1984).

    Article  Google Scholar 

  10. A. P. Rudenko, I. I. Kulakova, and V. L. Skvortsova, Usp. Khim. 62, 99 (1993).

    Article  Google Scholar 

  11. K. E. Spear and M. Frenklach, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, New York, 1994), Chap. 2, pp. 243–304.

    Google Scholar 

  12. M. V. Baidakova, A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, V. G. Melekhin, N. A. Feoktistov, and A. Krüger, Semiconductors 36 (6), 615 (2002).

    Article  ADS  Google Scholar 

  13. C. Wild, N. Herres, and P. Koidl, J. Appl. Phys. 68, 973 (1990).

    Article  ADS  Google Scholar 

  14. O. A. Williams, Diamond Relat. Mater. 20, 621 (2011).

    Article  ADS  Google Scholar 

  15. I. B. Yanchuk, M. Y. Valakh, A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, N. A. Feoktistov, A. Richter, and B. Wolf, Diamond Relat. Mater. 13, 266 (2004).

    Article  ADS  Google Scholar 

  16. N. A. Feoktistov, V. I. Sakharov, I. T. Serenkov, V. A. Tolmachev, I. V. Korkin, A. E. Aleksenskii, A. Ya. Vul’, and V. G. Golubev, Tec Sh. Phys. 56 (5), 718 (2011).

    Article  Google Scholar 

  17. N. A. Feoktistov, V. G. Golubev, S. A. Grudinkin, T. S. Perova, R. A. Moore, and A. Ya. Vul’, Proc. SPIE—Int. Soc. Opt. Eng. 5824, 157 (2005).

    ADS  Google Scholar 

  18. S. Prawer and R. Nemanich, Philos. Trans. R. Soc. London, Ser. A 362, 2537 (2004).

    Article  ADS  Google Scholar 

  19. J. Michler, Y. von Kaenel, J. Stiegler, and E. Blank, J. Appl. Phys. 83, 187 (1998).

    Article  ADS  Google Scholar 

  20. R. L. Parker, Solid State Phys. 25, 151 (1970).

    Google Scholar 

  21. K. A. Jackson, D. R. Uhlmann, and J. D. Hunnt, J. Cryst. Growth 1, 1 (1967).

    Article  ADS  Google Scholar 

  22. W. K. Burton, N. Cabrera, and F. S. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 41, 1237 (1993).

    Article  Google Scholar 

  24. S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 42, 2797 (1994).

    Article  Google Scholar 

  25. S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 151, 1 (1996).

    Article  ADS  Google Scholar 

  26. S. A. Kukushkin, Thin Solid Films 207, 302 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Feoktistov.

Additional information

Original Russian Text © N.A. Feoktistov, S.A. Grudinkin, V.G. Golubev, M.A. Baranov, K.V. Bogdanov, S.A. Kukushkin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2125–2130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feoktistov, N.A., Grudinkin, S.A., Golubev, V.G. et al. Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition. Phys. Solid State 57, 2184–2190 (2015). https://doi.org/10.1134/S1063783415110104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110104

Keywords

Navigation