Skip to main content
Log in

Positron spectroscopy of defects in submicrocrystalline nickel after low-temperature annealing

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the method of measuring the positron lifetime spectra and Doppler broadening annihilation line spectroscopy, the annealing of defects in submicrocrystalline nickel produced by equal channel angular pressing has been studied. In as-prepared samples, the positrons are trapped by dislocation defects and vacancy complexes inside crystallites. The size of vacancy complexes decreases with increasing annealing temperature in the interval ΔT = 20–300°C. However, at T = 360°C, the complexes start growing again. The dependence of S-parameter on W-parameter derived from the Doppler broadening spectroscopy has two parts with different inclinations to axes that correspond to different types of primary centers of positron trapping in submicrocrystalline nickel. It has been elucidated that, at recovery stage in the temperature interval ΔT = 20–180°C, the main centers of positron trapping are low-angle boundaries enriched by impurities, while at in situ recrystallization stage in the temperature interval ΔT = 180–360°C, the primary centers of positron trapping are low-angle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  2. R. A. Andrievskii and A. M. Glezer, Phys.—Usp. 52(4), 315 (2009).

    Article  ADS  Google Scholar 

  3. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  4. M. Lu, L. Dao, R. J. Asaro, J. T. M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  5. V. M. Segal, V. N. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev (Navuka i Tekhnika, Minsk, 1994) [in Russian].

  6. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2005) [in Russian].

    Google Scholar 

  7. T. Knudsen, W. Q. Gao, A. Godfrey, Q. Liu, and N. Hansen, Metall. Mater. Trans. A 39, 430 (2008).

    Article  Google Scholar 

  8. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials (FIZMATLIT, Moscow, 2008) [in Russian].

    Google Scholar 

  9. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer-Verlag, Berlin, 1999).

    Book  Google Scholar 

  10. T. E. M. Staab, R. Krause-Rehberg, and B. Kieback, J. Mater. Sci. 34, 3833 (1999).

    Article  ADS  Google Scholar 

  11. J. Cizek, I. Prochazka, M. Cieslar, I. Stulikova, F. Chmelik, and R. K. Islamgaliev, Phys. Status Solidi A 191, 391 (2002).

    Article  ADS  Google Scholar 

  12. R. Wuerschum, B. Oberdorfer, E.-M. Steyskal, W. Sprengel, W. Puff, Ph. Pikart, Ch. Hugenschmidt, and R. Pippan, Physica B (Amsterdam) 407, 2670 (2012).

    Article  ADS  Google Scholar 

  13. B. Oberdorfer, E.-M. Steyskal, W. Sprengel, and W. Puff, Phys. Rev. Lett. 105, 146101 (2010).

    Article  ADS  Google Scholar 

  14. J. Cizek, I. Prochazka, M. Cieslar, R. Kuzel, J. Kuriplach, F. Chmelnik, I. Stulikova, F. Becvar, O. Melikhova, and R. K. Islamgaliev, Phys. Rev. B: Condens. Matter 65, 094106 (2002).

    Article  ADS  Google Scholar 

  15. P. V. Kuznetsov, I. V. Petrakova, T. V. Rakhmatulina, A. A. Baturin, and A. V. Korznikov, Zavod. Lab., Diagn. Mater. 78, 26 (2012).

    Google Scholar 

  16. P. V. Kuznetsov, I. V. Petrakova, O. G. Sanarova, and A. V. Korznikov, Deform. Razrushenie Mater., No. 1, 33 (2012).

    Google Scholar 

  17. A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, Phys. Met. Metallogr. 84(4), 413 (1997).

    Google Scholar 

  18. Yu. R. Kolobov, N. V. Girsova, K. V. Ivanov, G. P. Grabovetskaya, and O. B. Perevalova, Russ. Phys. J. 45(6), 547 (2002).

    Article  Google Scholar 

  19. Yu. S. Bordulev, R. S. Laptev, G. V. Garanin, and A. M. Lider, Sovrem. Naukoemkie Tekhnol., No. 8, 184 (2013).

    Google Scholar 

  20. Y. S. Bordulev, R. S. Laptev, V. N. Kudiyarov, and A. M. Lider, Adv. Mater. Res. 880, 93 (2014).

    Article  Google Scholar 

  21. R. S. Laptev, Y. S. Bordulev, V. N. Kudiyarov, A. M. Lider, and G. V. Garanin, Adv. Mater. Res. 880, 134 (2014).

    Article  Google Scholar 

  22. D. Giebel and J. Kansy, Phys. Procedia 35, 122 (2012).

    Article  ADS  Google Scholar 

  23. D. Giebel and J. Kansy, Mater. Sci. Forum 666, 138 (2010).

    Article  Google Scholar 

  24. The SP-Program. http://www.ifj.edu.pl/~mdryzek/page-1ro.htm.

  25. S. Mantl and W. Triftshäuser, Phys. Rev. B: Solid State 17, 1645 (1978).

    Article  ADS  Google Scholar 

  26. L. Liszkay, C. Corbel, L. Baroux, P. Hautojarvi, M. Bayhan, A. W. Brinkman, and S. Tatarenko, Appl. Phys. Lett. 64, 1380 (1994).

    Article  ADS  Google Scholar 

  27. M. J. Puska and R. M. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983).

    Article  ADS  Google Scholar 

  28. G. Dlubek, O. Brummer, N. Meyendorf, P. Hautojarvi, A. Vehanen, and J. Yli-Kauppila, J. Phys. F: Met. Phys. 9, 1961 (1979).

    Article  ADS  Google Scholar 

  29. B. L. Shivachev, T. Troev, and T. Yoshiie, J. Nucl. Mater. 306, 105 (2002).

    Article  ADS  Google Scholar 

  30. E. V. Kozlov, N. A. Koneva, and N. A. Popova, Fiz. Mezomekh. 12(4), 93 (2009).

    Google Scholar 

  31. Z. Q. Yang, Mater. Lett. 60, 3846 (2006).

    Article  Google Scholar 

  32. M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M. J. Puska, K. Saarinen, P. Hautojarvi, and R. M. Nieminen, Phys. Rev. B: Condens. Matter 54, 2397 (1996).

    Article  ADS  Google Scholar 

  33. S. V. Divinski, G. Reglitz, M. Wegner, M. Peterlechner, and G. Wilde, J. Appl. Phys. 115, 113503 (2014).

    Article  ADS  Google Scholar 

  34. A. G. Crocker, M. Doneghan, and K. W. Ingle, Philos. Mag. A 41, 21 (1980).

    Article  ADS  Google Scholar 

  35. V. I. Betekhtin, E. D. Tabachnikova, A. G. Kadomtsev, M. V. Narykova, and R. Lapovok, Tech. Phys. Lett. 37(8), 767 (2011).

    Article  ADS  Google Scholar 

  36. V. I. Betekhtin, A. G. Kadomtsev, V. Skienicka, and I. Saxi, Phys. Solid State 49(10), 1874 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kuznetsov.

Additional information

Original Russian Text © P.V. Kuznetsov, Yu.P. Mironov, A.I. Tolmachev, Yu.S. Bordulev, R.S. Laptev, A.M. Lider, A.V. Korznikov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 2, pp. 209–218.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.V., Mironov, Y.P., Tolmachev, A.I. et al. Positron spectroscopy of defects in submicrocrystalline nickel after low-temperature annealing. Phys. Solid State 57, 219–228 (2015). https://doi.org/10.1134/S1063783415020225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415020225

Keywords

Navigation