Skip to main content
Log in

Compensation effect in undoped polycrystalline CdTe synthesized under nonequilibrium conditions

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The compensation effect has been revealed in undoped polycrystalline CdTe synthesized during rapid crystallization. The revealed effect leads to an increase in the electrical resistivity to 108–1010 Ω cm at a background impurity concentration of ∼1015 cm−3 (GaCd and ClTe donors, unidentified acceptors). For some samples, this effect is accompanied by the appearance of persistent photoconductivity, which disappears at a temperature of ∼200 K. It has been shown that all the polycrystals studied are characterized by a three-level compensation mechanism in which the fundamental properties of the material are determined by deep donors and/or acceptors with a concentration of 1012 cm−3. Depending on the specific growth conditions, the electrical resistivity at room temperature is determined by deep centers with activation energies of 0.59 ± 0.10 and 0.71 ± 0.10 eV, which are supposedly related to intrinsic point defects, and deep centers with activation energies of 0.4 ± 0.1 eV, which belong to the DX center formed by the GaCd donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mandel, Phys. Rev. 134(4A), A1073 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. Y. Marfaing, Thin Solid Films 387(1–2), 123 (2001).

    Article  ADS  Google Scholar 

  3. W. Stadler, D. M. Hofmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Wegel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, Phys. Rev. B: Condens. Matter 51(16), 10619 (1995).

    Article  ADS  Google Scholar 

  4. G. F. Neumark, Phys. Rev. B: Condens. Matter 26(4), 2250 (1982).

    Article  ADS  Google Scholar 

  5. Su-Huai Wei and S. B. Zhang, Phys. Rev. B: Condens. Matter 66, 155211 (2002).

    Article  ADS  Google Scholar 

  6. A. Carvalho, A. K. Tagantsev, S. Öberg, P. R. Briddon, and N. Setter, Phys. Rev. B: Condens. Matter 81, 075215 (2010).

    Article  ADS  Google Scholar 

  7. Mao-Hua Du, H. Takenaka, and D. J. Singh, Phys. Rev. B: Condens. Matter 77, 094122 (2008).

    Article  ADS  Google Scholar 

  8. M. Fiderle, V. Babentsov, J. Franc, A. Fauler, K. W. Benz, R. B. James, and E. Cross, J. Cryst. Growth 243, 77 (2002).

    Article  ADS  Google Scholar 

  9. J. Franc, M. Fiederle, V. Babentsov, A. Fauler, K. W. Benz, and R. James, J. Electron. Mater. 32(7), 772 (2003).

    Article  ADS  Google Scholar 

  10. D. J. Chadi and C. H. Park, Mater. Sci. Forum 196–201, 285 (1995).

    Article  Google Scholar 

  11. S. B. Zhang, S.-H. Wei, and Yanfa Yan, Physica B (Amsterdam) 302–303, 135 (2001).

    Google Scholar 

  12. A. Zunger, Appl. Phys. Lett. 83, 57 (2003).

    Article  ADS  Google Scholar 

  13. Su-Huai Wei and S. B. Zhang, Phys. Status Solidi B 229, 305 (2002).

    Article  ADS  Google Scholar 

  14. Yu. V. Klevkov, V. P. Martovitskii, V. S. Bagaev, and V. S. Krivobok, Semiconductors 40(2), 148 (2006).

    Article  ADS  Google Scholar 

  15. V. S. Bagaev, Yu. V. Klevkov, S. A. Kolosov, V. S. Krivobok, E. E. Onishchenko, and A. A. Shepel’, Fiz. Tekh. Poluprovodn. (St. Petersburg) 45(7), 908 (2011).

    Google Scholar 

  16. Yu. V. Klevkov, S. A. Kolosov, V. S. Krivobok, V. P. Martovisky, and S. N. Nikolaev, Semiconductors 42(11), 1264 (2008).

    Article  ADS  Google Scholar 

  17. M. A. Berding, Phys. Rev. B: Condens. Matter 60,12, 8943 (1999).

    Article  ADS  Google Scholar 

  18. G. M. Khattak and C. G. Scott, J. Phys.: Condens. Matter 3, 8619 (1991).

    Article  ADS  Google Scholar 

  19. H. Elhadidy, J. Franc, E. Belas, P. Hlidek, P. Moravec, R. Grill, and P. Hoschl, J. Electron. Mater. 37(9), 1219 (2008).

    Article  ADS  Google Scholar 

  20. P. Emanuelsson, P. Omling, B. K. Meyer, M. Wienecke, and M. Schenk, Phys. Rev. B: Condens. Matter 47, 15578 (1993).

    Article  ADS  Google Scholar 

  21. A. Balcioglu, R. K. Ahrenkiel, and F. Hasson, J. Appl. Phys. 88, 7175 (2000).

    Article  ADS  Google Scholar 

  22. T. Ido, A. Heurtel, R. Triboulet, and Y. Marfaing, J. Phys. Chem. Solids 48, 781 (1987).

    Article  ADS  Google Scholar 

  23. R. J. Nelson, Appl. Phys. Lett. 31(5), 351 (1977).

    Article  ADS  Google Scholar 

  24. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39(10), 635 (1977).

    Article  ADS  Google Scholar 

  25. D. J. Chadi and K. J. Chang, Phys. Rev. B: Condens. Matter 39(14), 10063 (1989).

    Article  ADS  Google Scholar 

  26. C. H. Park and D. J. Chadi, Phys. Rev. B: Condens. Matter 52(16), 11884 (1995).

    Article  ADS  Google Scholar 

  27. E. Placzek-Popko, Z. Gumienny, J. Trzmiel, and J. Szatkowski, Opt. Appl. 38(3), 559 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kolosov.

Additional information

Original Russian Text © V.S. Bagaev, Yu.V. Klevkov, S.A. Kolosov, V.S. Krivobok, A.A. Shepel’, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 8, pp. 1479–1487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagaev, V.S., Klevkov, Y.V., Kolosov, S.A. et al. Compensation effect in undoped polycrystalline CdTe synthesized under nonequilibrium conditions. Phys. Solid State 53, 1554 (2011). https://doi.org/10.1134/S1063783411080051

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S1063783411080051

Keywords

Navigation