Skip to main content
Log in

Critical magnetic field of the vortex-free state in NbC thin films and prospects for its observation in MgB2

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The critical magnetic fields H c and H c2 are measured for thin films of the isotropic superconductor NbC. It is revealed that the critical fields exhibit strong anisotropy due to the vortex-free state of the film in a magnetic field aligned parallel to its surface. The H c/H c2 ratio at 2 K exceeds 6 and increases with increasing temperature. The dependence H c(T) agrees quantitatively with the concepts of microscopic theory on the vortex-free state of a thin film of a clean superconductor in the temperature range below T c . As the electron mean free path decreases under irradiation of the film with a low dose of He+ ions, the critical field H c remains unchanged near T c but increases significantly at lower temperatures. The well-known theoretical models are used to estimate the electronic parameters and thicknesses of MgB2 films for which the specific features associated with the vortex-free state of the two-gap superconductor can manifest themselves in the temperature dependence of the critical magnetic field H c(T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. F. Komnik, Physics of Metallic Films: Dimensional and Structural Effects (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  2. D. Saint-James and P. G. de Gennes, Phys. Lett. 7, 306 (1963).

    Article  ADS  Google Scholar 

  3. A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 47, 720 (1964) [Sov. Phys. JETP 20, 480 (1964)].

    Google Scholar 

  4. R. S. Thompson and A. Baratoff, Phys. Rev. Lett. 15, 971 (1965).

    Article  ADS  Google Scholar 

  5. E. A. Shapoval, Zh. Éksp. Teor. Fiz. 49, 930 (1965) [Sov. Phys. JETP 22, 647 (1965)].

    Google Scholar 

  6. E. A. Shapoval, Zh. Éksp. Teor. Fiz. 51(2), 669 (1966) [Sov. Phys. JETP 24 (2), 443 (1966)].

    Google Scholar 

  7. G. D. Cody and R. E. Miller, Phys. Rev. 173, 481 (1968).

    Article  ADS  Google Scholar 

  8. R. E. Miller and G. D. Cody, Phys. Rev. 173, 494 (1968).

    Article  ADS  Google Scholar 

  9. A. M. Toxen, Phys. Rev. 123, 442 (1961).

    Article  ADS  Google Scholar 

  10. G. J. Dolan, J. Low Temp. Phys. 15, 133 (1974).

    Article  ADS  Google Scholar 

  11. J. P. Burger, G. Deutscher, E. Guyon, and A. Martinet, Phys. Rev. [Sect] A 137, 853 (1965).

    Article  ADS  Google Scholar 

  12. H. J. Fink, Phys. Rev. 177, 732 (1969).

    Article  ADS  Google Scholar 

  13. M. N. Mikheeva and E. A. Shapoval, Zh. Éksp. Teor. Fiz. 55(3), 1059 (1968) [Sov. Phys. JETP 28 (3), 551 (1968)].

    Google Scholar 

  14. M. Tinkham, Phys. Rev. 129, 2413 (1963).

    Article  ADS  Google Scholar 

  15. A. I. Golovashkin, B. G. Zhurkin, A. L. Karuzskiĭ, S. I. Krasnosvobodtsev, V. P. Martovitskiĭ, E. V. Pechen’, V. V. Rodin, Yu. I. Stepanov, and A. V. Shirkov, Fiz. Tverd. Tela (Leningrad) 28(11), 3342 (1986) [Sov. Phys. Solid State 28 (11), 1881 (1986)].

    Google Scholar 

  16. N. P. Shabanova, S. I. Krasnosvobodtsev, V. S. Nozdrin, and A. I. Golovashkin, Fiz. Tverd. Tela (St. Petersburg) 38(11), 1969 (1996) [Phys. Solid State 38 (11), 1918 (1996)].

    Google Scholar 

  17. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 10, 998 (1959)].

    MathSciNet  Google Scholar 

  18. N. R. Werthamer, in Superconductivity, Ed. by R. D. Parks (Dekker Marcel, New York, 1969), Vol. 1, p. 321.

    Google Scholar 

  19. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  20. P. Szabo, P. Samueli, J. Kacharcik, T. Klein, J. Marcus, D. Fruchardt, S. Miraglia, C. Marcenat, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001).

    Google Scholar 

  21. H. Schmidt, J. F. Zasadzinski, K. E. Gray, and D. G. Hinks, Physica C (Amsterdam) 385, 221 (2003).

    ADS  Google Scholar 

  22. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, N. Z. Timergaleev, A. V. Yarigin, E. G. Maksimov, S. I. Krasnosvobodtsev, A. V. Varlashkin, M. A. Hein, G. Müller, H. Piel, L. G. Sevastyanova, O. V. Kravchenko, K. P. Burdina, and B. M. Bulychev, Solid State Commun. 129, 85 (2004).

    Article  ADS  Google Scholar 

  23. A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 65, 180517 (2002).

    Google Scholar 

  24. M. R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and O. Fischer, Phys. Rev. Lett. 89, 187003 (2002).

    Google Scholar 

  25. F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, and S. Tajima, Phys. Rev. Lett. 89, 257001 (2002).

    Google Scholar 

  26. A. Gurevich, S. Patnaik, V. Braccini, K. H. Kim, C. Mielke, X. Song, L. D. Cooley, S. D. Bu, D. M. Kim, J. H. Choi, L. J. Belenky, J. Giencke, M. K. Lee, W. Tian, X. Q. Pan, A. Siri, E. E. Hellstrom, C. B. Eom, and D. C. Larbalestier, Supercond. Sci. Technol. 17, 278 (2004).

    Article  ADS  Google Scholar 

  27. V. Braccini, A. Gurevich, J. E. Ciencke, M. C. Jewell, C. B. Eom, D. C. Larbalestier, A. Pogrebnyakov, Y. Cui, B. T. Liu, Y. F. Hu, J. M. Redwing, Qi Li, X. X. Xi, R. K. Singh, R. Gandikota, J. Kim, B. Wilkens, N. Newman, J. Rowell, B. Moeckly, V. Ferrando, C. Tarantini, D. Marré, M. Putti, C. Ferdeghini, R. Vaglio, and E. Haanappel, Phys. Rev. B: Condens. Matter 71, 012504 (2005).

  28. I. I. Mazin and V. P. Antropov, Physica C (Amsterdam) 385, 49 (2003).

    ADS  Google Scholar 

  29. S. I. Krasnosvobodtsev, A. V. Varlashkin, A. I. Golovashkin, and N. P. Shabanova, Fiz. Tverd. Tela (St. Petersburg) 47(9), 1541 (2005) [Phys. Solid State 47 (9), 1600 (2005)].

    Google Scholar 

  30. R. Ma, Y. Bando, T. Mori, and D. Golberg, Chem. Mater. 15, 3194 (2003).

    Article  Google Scholar 

  31. Q. Yang, J. Sha, X. Ma, Y. Ji, and D. Yang, Supercond. Sci. Technol. 17, L31 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.P. Shabanova, S.I. Krasnosvobodtsev, A.V. Varlashkin, A.I. Golovashkin, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 6, pp. 990–995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabanova, N.P., Krasnosvobodtsev, S.I., Varlashkin, A.V. et al. Critical magnetic field of the vortex-free state in NbC thin films and prospects for its observation in MgB2 . Phys. Solid State 49, 1040–1045 (2007). https://doi.org/10.1134/S1063783407060030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407060030

PACS numbers

Navigation