Skip to main content
Log in

Ultimate Lasing Temperature of Microdisk Lasers

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model is developed that makes it possible to analytically determine the threshold current of a microdisk laser with consideration for its self-heating as a function of the ambient temperature and the microlaser diameter. It is shown that there exists a minimum microdisk diameter determined by self-heating, up to which continuous-wave lasing can be reached at a given temperature. Another manifestation of the self-heating effect is the existence of the ultimate working temperature, which is lower, the smaller the microlaser diameter. Reasonable agreement between the predictions of the model and the available experimental data is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. F. J. Levi, R. E. Slusher, S. L. McSall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, Electron. Lett. 28, 1010 (1992).

    Article  ADS  Google Scholar 

  2. T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, IEEE Photon. Technol. Lett. 9, 878 (1997).

    Article  ADS  Google Scholar 

  3. B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).

    Article  ADS  Google Scholar 

  4. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, Appl. Phys. Lett. 76, 3519 (2000).

    Article  ADS  Google Scholar 

  5. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, Optica 4, 940 (2017).

    Article  ADS  Google Scholar 

  6. N. Kryzhanovskaya, E. Moiseev, Yu. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Yu. Zadiranov, Yu. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, Opt. Lett. 42, 3319 (2017).

    Article  ADS  Google Scholar 

  7. Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, Photon. Res. 6, 776 (2018).

    Article  Google Scholar 

  8. S. Zhu, B. Shi, Q. Li, and K. M. Lau, Opt. Express 26, 14514 (2018).

    Article  ADS  Google Scholar 

  9. N. V. Kryzhanovskaya, E. I. Moiseev, Yu. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Yu. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, Electron. Lett. 51, 1354 (2015).

    Article  ADS  Google Scholar 

  10. E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Yu. Zadiranov, N. Kalyuzhnyy, S. Mintairov, and A. Zhukov, Opt. Lett. 43, 4554 (2018).

    Article  ADS  Google Scholar 

  11. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, in Proceedings of the Conference CLEO: Applications and Technology (San Jose, CA, USA, 2017), p. JTh5C.3.

  12. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, J. Lightwave Technol. 29, 1295 (1993).

    Google Scholar 

  13. A. Al-Omari and K. Lear, IEEE Photon. Technol. Lett. 17, 1767 (2005).

    Article  ADS  Google Scholar 

  14. P. P. Baveja, B. Kogel, P. Westbergh, J. S. Gustavsson, A. Haglund, D. N. Maywar, G. P. Agrawal, and A. Larsson, Opt Express 19, 15490 (2011).

    Article  ADS  Google Scholar 

  15. S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, Electron. Lett. 51, 1602 (2015).

    Article  ADS  Google Scholar 

  16. N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov, Photon. Res. 7, 664 (2019).

    Article  Google Scholar 

  17. N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, Yu. A. Guseva, M. M. Kulagina, S. A. Blokhin, Yu. Berdnikov, and A. E. Zhukov, J. Appl. Phys. 126, 063107 (2019).

    Article  ADS  Google Scholar 

  18. F. I. Zubov, E. I. Moiseev, G. O. Kornyshov, N. V. Kryzhanovskaya, Yu. M. Shernyakov, A. S. Payusov, M. M. Kulagina, N. A. Kalyuzhnyi, S. A. Mintairov, M. V. Maksimov, and A. E. Zhukov, Tech. Phys. Lett. 45, 994 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project 19-72-30010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Moiseev.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.E., Kryzhanovskaya, N.V., Moiseev, E.I. et al. Ultimate Lasing Temperature of Microdisk Lasers. Semiconductors 54, 677–681 (2020). https://doi.org/10.1134/S1063782620060172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620060172

Keywords:

Navigation