Skip to main content
Log in

Nonradiative Energy Transfer in Hybrid Nanostructures with Varied Dimensionality

  • XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A composite nanostructure based on quasi-one-dimensional InP nanowires with an InAsP nanoinsert, grown on a Si(111) substrate by the method of molecular-beam epitaxy, and CdSe/ZnS zero-dimensional colloidal quantum dots is reported for the first time. The nonradiative resonance energy transfer between components of the hybrid nanostructure, namely, between the colloidal quantum dots and the nanoinsert, is experimentally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Briscoe, D. E. Gallardo, S. Hatch, V. Lesnyak, N. Gaponik, and S. Dunn, J. Mater. Chem. 21, 2517 (2011).

    Article  Google Scholar 

  2. Meng-Lin Lu, Chih-Wei Lai, Hsing-Ju Pan, Chung-Tse Chen, Pi-Tai Chou, and Yang-Fang, Nano Lett. 13, 1920 (2013).

    Article  ADS  Google Scholar 

  3. D. Hou, A. Dev, K. Frank, A. Rosenauer, and T. Voss, J. Phys. Chem. C 116, 19604 (2012).

    Article  Google Scholar 

  4. A. I. Khrebtov, V. G. Talalaev, P. Werner, V. V. Danilov, B. V. Novikov, I. V. Shtrom, A. S. Panfutova, and G. E. Cirlin, Semiconductors 47, 1346 (2013).

    Article  ADS  Google Scholar 

  5. A. I. Khrebtov, V. G. Talalaev, Yu. B. Samsonenko, P. Werner, V. V. Rutskaya, M. V. Artem’ev, and G. E. Tsyrlin, Tech. Phys. Lett. 40, 558 (2014).

    Article  ADS  Google Scholar 

  6. T. Förster, Ann. Phys. 437, 55 (1948).

    Article  Google Scholar 

  7. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996).

    Article  ADS  Google Scholar 

  8. A. L. Rogach, T. A. Clar, J. M. Lupton, A. Meijerink, and J. Feldmann, J. Mater. Chem. 19, 1208 (2009).

    Article  Google Scholar 

  9. D. M. Samosvat, O. P. Chikalova-Luzina, A. S. Stepashkina, and G. G. Zegrya, Tech. Phys. Lett. 39, 74 (2013).

    Article  ADS  Google Scholar 

  10. P. L. Hernandez-Martinez, A. O. Govorov, and H. V. Demiz, J. Phys. Chem. C 118, 4951 (2014).

    Article  Google Scholar 

  11. R. R. Reznik, G. E. Cirlin, I. V. Shtrom, A. I. Khrebtov, I. P. Soshnikov, N. V. Kryzhanovskaya, E. I. Moiseev, and A. E. Zhukov, Tech. Phys. Lett. 44, 112 (2018).

    Article  Google Scholar 

  12. K. F. Chou and A. M. Dennis, Sensors 15, 13288 (2015).

    Article  Google Scholar 

  13. V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc. 114, 880 (2013).

    Article  ADS  Google Scholar 

  14. C. De Mello Donego, M. Bode, and A. Meijerink, Phys. Rev. B 74, 085320 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (grant no. 18-02-40006 mega) and by the Russian Science Foundation (grant no. 19-72-30004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Khrebtov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrebtov, A.I., Reznik, R.R., Ubyivovk, E.V. et al. Nonradiative Energy Transfer in Hybrid Nanostructures with Varied Dimensionality. Semiconductors 53, 1258–1261 (2019). https://doi.org/10.1134/S1063782619090082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619090082

Keywords:

Navigation