Skip to main content
Log in

Photoluminescence properties of modulation-doped In x Al1–x As/In y Ga1–y As/In x Al1–x As structures with strained inas and gaas nanoinserts in the quantum well

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoluminescence spectra of modulation-doped InAlAs/InGaAs/InAlAs heterostructures with quantum wells containing thin strained InAs and GaAs inserts are investigated. It is established that the insertion of pair InAs layers and/ or a GaAs transition barriers with a thickness of 1 nm into a quantum well leads to a change in the form and energy position of the photoluminescence spectra as compared with a uniform In0.53Ga0.47As quantum well. Simulation of the band structure shows that this change is caused by a variation in the energy and wave functions of holes. It is demonstrated that the use of InAs inserts leads to the localization of heavy holes near the InAs layers and reduces the energy of optical transitions, while the use of GaAs transition barriers can lead to inversion of the positions of the light- and heavy-hole subbands in the quantum well. A technique for separately controlling the light- and heavy-hole states by varying the thickness and position of the GaAs and InAs inserts in the quantum well is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-H. Kim and J. A. del Alamo, IEEE Electron Dev. Lett. 31,806(2010).

    Article  ADS  Google Scholar 

  2. W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppel, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24,214002(2013).

    Article  ADS  Google Scholar 

  3. T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Dev. Lett. 13,325(1992).

    Article  ADS  Google Scholar 

  4. A. Shilenas, J. Poela, K. Poela, V. Juciene, I. S. Vasil’evskii, G. B. Galiev, S. S. Pushkarev, and E. A. Klimov, Semiconductors 47,372(2013).

    Article  ADS  Google Scholar 

  5. T. Akazaki, J. Nitta, H. Takayanagi, T. Enoki, and K. Arai, J. Electron. Mater. 25,745(1996).

    Article  ADS  Google Scholar 

  6. D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, R. A. Khabibullin, V. A. Kul’bachinskii, and N. A. Yuzeeva, Semiconductors 46,484(2012).

    Article  ADS  Google Scholar 

  7. K. Pozela, A. Šilenas, J. Pozela, V. Juciene, G. B. Galiev, I. S. Vasil’evskii, and E. A. Klimov, Appl. Phys. A 109,233(2012).

    Article  ADS  Google Scholar 

  8. V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27,035021(2012).

    Article  ADS  Google Scholar 

  9. J. Pozela, K. Pozela, V. Juciene, and A. Shkolnic, Semicond. Sci. Technol. 26,014025(2011).

    Article  ADS  Google Scholar 

  10. X. Th. Zhu and H. Goronkin, Appl. Phys. Lett. 60,2141(1992).

    Article  ADS  Google Scholar 

  11. I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, K. Pozela, J. Pozela, V. Juciene, A. Suzhedelis, N. Zhurauskene, S. Kershulis, and V. Stankevich, Semiconductors 45,1169(2011).

    Article  ADS  Google Scholar 

  12. G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, A. N. Klochkov, D. V. Lavrukhin, S. S. Pushkarev, and P. P. Maltsev, Semiconductors 49,234(2015).

    Article  ADS  Google Scholar 

  13. X. Wallart, J. Lastennet, D. Vignaud, and F. Mollot, Appl. Phys. Lett. 87,043504(2005).

    Article  ADS  Google Scholar 

  14. H. Choi, J. Cho, M. Jeon, and Y. Jeong, J. Korean Phys. Soc. 54,643(2009).

    Article  ADS  Google Scholar 

  15. X. Z. Shang, Jing Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid State Electron. 51,85(2007).

    Article  ADS  Google Scholar 

  16. X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97,053706(2005).

    Article  ADS  Google Scholar 

  17. M. J. S. P. Brasil, R. E. Nahory, W. E. Quinn, M. C. Tamargo, and H. H. Farell, Appl. Phys. Lett. 60,1981(1992).

    Article  ADS  Google Scholar 

  18. S. M. Olsthoorn, F. A. J. M. Driessen, and L. J. Giling, J. Appl. Phys. 73,7804(1993).

    Article  ADS  Google Scholar 

  19. D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 76,2324(1994).

    Article  ADS  Google Scholar 

  20. D. Vignaud, X. Wallart, F. Mollot, and B. Semage, J. Appl. Phys. 84,2138(1998).

    Article  ADS  Google Scholar 

  21. V. Duez, O. Vanbesien, D. Lippens, D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 85,2202(1999).

    Article  ADS  Google Scholar 

  22. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).

    Book  Google Scholar 

  23. Y. Liu and H. Wang, J. Appl. Phys. 100,034505(2006).

    Article  ADS  Google Scholar 

  24. T. Ando and S. Mori, J. Phys. Soc. Jpn. 47,1518(1979).

    Article  ADS  Google Scholar 

  25. H. Taguchi, H. Murakami, and M. Oura, Jpn. J. Appl. Phys. 45,8549(2006).

    Article  ADS  Google Scholar 

  26. J. P. Perdew and A. Zunger, Phys. Rev. B 23,5048(1981).

    Article  ADS  Google Scholar 

  27. G. Hendorfer, M. Seto, and H. Ruckser, Phys. Rev. B 48,2328(1993).

    Article  ADS  Google Scholar 

  28. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89,5815(2001).

    Article  ADS  Google Scholar 

  29. Y. Nishio, T. Tange, and N. Hirayama, Phys. Status Solidi A 210,2423(2013).

    Article  Google Scholar 

  30. M. P. C. M. Krijin, Semicond. Sci. Technol. 6,27(1991).

    Article  MATH  ADS  Google Scholar 

  31. L. P. Avakyants, P. Yu. Bokov, A. V. Chervyakov, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, and V. A. Kulbachinskii, Semicond. Sci. Technol. 21,462(2006).

    Article  ADS  Google Scholar 

  32. E. Tournie, K. H. Ploog, and C. Alibert, Appl. Phys. Lett. 61,2808(1992).

    Article  ADS  Google Scholar 

  33. H. Xie, J. Katz, and W. I. Wang, Appl. Phys. Lett. 59,3601(1991).

    Article  ADS  Google Scholar 

  34. Y. H. Wang, Sheng S. Li, J. Chu, and Pin Ho, Appl. Phys. Lett. 64,727(1994).

    Article  ADS  Google Scholar 

  35. G. B. Galiev, A. L. Vasil’ev, R. M. Imamov, E. A. Klimov, P. P. Maltsev, S. S. Pushkarev, M. Yu. Presnyakov, and I. N. Trun’kin, Crystallogr. Rep. 59,900(2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Galiev.

Additional information

Original Russian Text © G.B. Galiev, I.S. Vasil’evskii, E.A. Klimov, A.N. Klochkov, D.V. Lavruhin, S.S. Pushkarev, P.P. Maltsev, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 9, pp. 1243–1253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Vasil’evskii, I.S., Klimov, E.A. et al. Photoluminescence properties of modulation-doped In x Al1–x As/In y Ga1–y As/In x Al1–x As structures with strained inas and gaas nanoinserts in the quantum well. Semiconductors 49, 1207–1217 (2015). https://doi.org/10.1134/S1063782615090122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615090122

Keywords

Navigation