Skip to main content
Log in

Lattice vibrations of Zn1 − x Cd x Se semiconductor alloy in the two-mode and percolation models of rearrangement of the vibrational spectrum with the composition

  • Nonelectronic Properties of Semiconductors (Atomic Structure, Diffusion)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The lattice-vibration spectra of (Zn,Cd)Se and Zn(Se,Te) alloy crystals are considered together. The rearrangement of vibrational modes of the crystals under variations in the alloy composition is interpreted within the context of the two-mode (1-bond → 1-mode) and percolation (1-bond → 2-mode) models. In (Zn,Cd)Se alloys of any composition, the lattice vibration modes are distributed in frequency in accordance with the two-mode type of behavior and can be divided into ZnSe- and CdSe-like vibrations and one complimentary low-intensity mode. In the percolation model of rearrangement of the vibrational spectra of the alloy, the complementary mode is a consequence of the composite character of the alloy formed with natural local fluctuations of the alloy composition in accordance with percolation theory. The complementary mode is not associated with defects; in contrast, it is a derivative of the principal mode of ZnSe-like vibrations. The optical vibration spectrum of the (Zn,Cd)Se alloy consists of a single CdSe-like vibrational mode and a percolation doublet of ZnSe-like vibrational modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. F. Chang and S. S. Mitra, Adv. Phys. 20, 359 (1971).

    Article  ADS  Google Scholar 

  2. J. Dow, W. Packard, H. Blackstead, and D. Jenkins, in Dynamical Properties of Solids: Phonon Physics, Ed. by G. Horton and A. Maradudin (Elsevier Science, Amsterdam, 1995).

  3. R. G. Alonso, E.-K. Suh, A. K. Ramdas, N. Samarth, H. Luo, and J. K. Furdyna, Phys. Rev. B 40, 3720 (1989).

    Article  ADS  Google Scholar 

  4. E. A. Vinogradov, B. N. Mavrin, and L. K. Vodop’yanov, J. Exp. Theor. Phys. 99, 749 (2004).

    Article  ADS  Google Scholar 

  5. V. V. Artamonov, V. I. Sidorenko, and A. M. Yaremko, Ukr. Fiz. Zh. 28, 42 (1983).

    Google Scholar 

  6. C. S. Yang, W. C. Chou, D. M. Chen, C. S. Ro, J. L. Shen, and T. R. Yang, Phys. Rev. B 59, 8128 (1999).

    Article  ADS  Google Scholar 

  7. O. Pagés, T. Tite, K. Kim, P. A. Graf, O. Maksimov, and M. C. Tamargo, J. Phys.: Condens. Matter 18, 577 (2006).

    ADS  Google Scholar 

  8. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Book  MATH  Google Scholar 

  9. S. P. Kozyrev, Phys. Solid State 51, 1004 (2009); Phys. Solid State 50, 1117 (2008).

    Article  ADS  Google Scholar 

  10. O. Pagés, A. V. Postnikov, M. Kassem, A. Chafi, A. Nassour, and S. Doyen, Phys. Rev. B 77, 125208 (2008).

    Article  ADS  Google Scholar 

  11. O. Brafman, Solid State Commun. 11, 447 (1972).

    Article  ADS  Google Scholar 

  12. L. K. Vodopyanov, E. A. Vinogradov, V. S. Vinogradov, I. V. Kucherenko, B. N. Mavrin, N. N. Novikova, and P. V. Shapkin, Phys. Status Solidi C 1, 3162 (2004).

    Article  ADS  Google Scholar 

  13. K. V. Shalimova, A. F. Botnev, V. A. Dmitriev, N. Z. Kognovitskaya, and V. V. Starostin, Sov. Phys. Crystallogr. 14, 531 (1969).

    Google Scholar 

  14. Yu. A. Mityagin, L. K. Vodop’yanov, and E. A. Vinogradov, Sov. Phys. Solid State 17, 1341 (1975).

    Google Scholar 

  15. E. Jahne, Phys. Status Solidi B 74, 275 (1976); Phys. Status Solidi B 75, 222 (1976).

    Article  ADS  Google Scholar 

  16. O. Pagés, J. Souhabi, and A. Chafi, Phys. Rev. B 80, 035204 (2009).

    Article  ADS  Google Scholar 

  17. J. C. Irwin and J. la Combe, Canad. J. Phys. 50, 2596 (1972).

    Article  ADS  Google Scholar 

  18. B. D. Rajput and D. A. Browne, Phys. Rev. B 53, 9052 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kozyrev.

Additional information

Original Russian Text © S.P. Kozyrev, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1297–1302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, S.P. Lattice vibrations of Zn1 − x Cd x Se semiconductor alloy in the two-mode and percolation models of rearrangement of the vibrational spectrum with the composition. Semiconductors 48, 1261–1266 (2014). https://doi.org/10.1134/S1063782614100157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100157

Keywords

Navigation