Skip to main content
Log in

Recombination and trapping centers in pure and doped TlBr crystals

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

TlBr is a promising wide-gap semiconductor for developing γ-radiation detectors. One of the limiting factors in developing the technology of detectors is the lack of experimentally determined trapping and recombination centers. In this paper, a generalized model of the formation and behavior of intrinsic defects in pure and doped TlBr single crystals is presented. The relation of intrinsic defects to growth conditions and electrical properties is determined. The previously obtained temperature dependences of the photoconductivity, the data of current deep level transient spectroscopy and microcathodoluminescence, and the kinetic characteristics of the photoconductivity are used as objects of analysis. It is shown that the compensation of charged centers control the transport properties of charge carriers. In compensated doped TlBr crystals, the product of the mobility and lifetime can reach μτ = 5 × 10−4 cm2 V−1. The energy-level diagram of local levels in pure and doped TlBr crystals is proposed. The ionization energies of major structural and impurity defects in TlBr, i.e., the anion vacancy V + a , cation vacancy V c , and Pb2+, O2−, S2− ions, are determined. The energy position of a single anion vacancy V + a is E c − 0.22 eV. The energy level of the cation vacancy is E v + 0.85 eV for a single cation vacancy and E v + 0.58 eV for a vacancy incorporated into the {Pb2+ V c }0 complex. The ionization energy of the Pb2+ Coulomb trap is E c − 0.08 eV in doped TlBr crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. M. Zaletin and V. P. Varvaritsa, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 54(3), 3 (2010).

    Google Scholar 

  2. A. Owens and A. Peacock, Nucl. Instrum. Methods Phys. Res. A 531, 18 (2004).

    Article  ADS  Google Scholar 

  3. V. M. Zaletin, I. P. Barkov, I. M. Gazizov, V. S. Khrunov, I. S. Lisitsky, and M. S. Kuznetsov, At. Energy 106, 272 (2009).

    Article  Google Scholar 

  4. V. M. Zaletin, I. S. Lisitsky, M. S. Kuznetsov, I. P. Barkov, I. M. Gazizov, and V. S. Khrunov, in Proceedings of the 9th Russian Conference on Semiconductor Physics Semiconductors-09 (Novosibirsk, 2009), p. 171.

    Google Scholar 

  5. I. M. Gazizov, V. M. Zaletin, V. M. Kukushkin, and V. S. Khrunov, Semiconductors 45, 636 (2011).

    Article  ADS  Google Scholar 

  6. I. M. Gazizov and V. M. Zaletin, in Proceedings of the Nuclear Science Symposium Conference (Knoxville, TN, IEEE, 2010), p. 3704.

    Google Scholar 

  7. I. M. Gazizov, V. M. Zaletin, V. M. Kukushkin, M. S. Kuznetsov, and I. S. Lisitsky, Semiconductors 46, 391 (2012).

    Article  ADS  Google Scholar 

  8. N. B. Smirnov, I. S. Lisitsky, M. S. Kuznetsov, A. V. Govorkov, and E. A. Kozhukhova, in Proceedings of the Nuclear Science Symposium Conference (San Diego, CA, IEEE, 2006), p. 3700.

    Google Scholar 

  9. M. S. Kuznetsov, K. S. Zaramenskikh, and I. S. Lisitsky, Tsvet. Metal., No. 4, 81 (2011).

    Google Scholar 

  10. I. M. Gazizov, M. V. Kuznetsov, I. S. Lisitsky, and V. M. Zaletin, in Proceedings of the Nuclear Science Symposium Conference (Knoxville, TN, IEEE, 2010), p. 3732.

    Google Scholar 

  11. N. B. Smirnov, A. V. Govorkov, M. S. Kuznetsov, K. S. Zaramenskikh, and I. S. Lisitsky, Tsvet. Metal., No. 6, 51 (2011).

    Google Scholar 

  12. N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, I. S. Lisitsky, M. S. Kuznetsov, K. S. Zaramenskikh, and A. Ya. Polyakov, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 57(3), 4 (2013).

    Google Scholar 

  13. K. S. Zaramenskikh, M. S. Kouznetsov, I. S. Lisitskij, N. B. Smirnov, I. M. Gazizov, V. M. Zaletin, M. Shorohov, and V. Gostilo, in Proceedings of the 15th International Workshop on Radiation Imaging Detectors (Paris, France, IWORID, 2013), PO-3-32, p. 206.

    Google Scholar 

  14. I. S. Lisitsky, N. B. Smirnov, M. S. Kuznetsov, A. V. Govorkov, E. A. Kozhukhova, and V. M. Zaletin, in Proceedings of Giredmet, Collection of Articles (Print, Moscow, 2007), p. 130.

    Google Scholar 

  15. T. Kawai, K. Kobayashi, M. Kurita, and Y. Makita, J. Phys. Soc. Jpn. 30, 1101 (1971).

    Article  ADS  Google Scholar 

  16. V. E. Lashkarev, A. V. Lyubchenko, and M. K. Sheinkman, Nonequilibrium Processes in Photoconductors (Nauk. Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  17. S. A. Samara, Phys. Rev. B 24, 575 (1981).

    Article  ADS  Google Scholar 

  18. M.-H. Du, J. Appl. Phys. 108, 053506 (2010).

    Article  ADS  Google Scholar 

  19. V. Lordi, J. Cryst. Growth 379, 84 (2013).

    Article  ADS  Google Scholar 

  20. M.-H. Du, J. Appl. Phys. 111, 073519 (2012).

    Article  ADS  Google Scholar 

  21. L. Grigorjeva and D. Millers, Nucl. Instrum. Methods Phys. Res. B 191, 134 (2002).

    Article  ADS  Google Scholar 

  22. R. W. Christy and J. D. Dimock, Phys. Rev. 141, 806 (1966).

    Article  ADS  Google Scholar 

  23. I. M. Gazizov, M. S. Kuznetsov, I. S. Lisitsky, and V. M. Zaletin, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 55(3), 13 (2011).

    Google Scholar 

  24. E. B. Kozyreva, V. G. Vlasov, and P. V. Meiklyar, Opt. Spektrosk. 26, 843 (1969).

    Google Scholar 

  25. V. F. Agekyan and Yu. A. Stepanov, Phys. Solid State 43, 763 (2001).

    Article  ADS  Google Scholar 

  26. M. T. Bennenbroek, A. Arnold, O. G. Poluektov, P. G. Baranov, and J. Schmidt, Phys. Rev. B 54, 11276 (1996).

    Article  ADS  Google Scholar 

  27. Chien-the Kao, L. G. Rowan, and L. M. Slifkin, Phys. Rev. B 42, 3142 (1990).

    Article  ADS  Google Scholar 

  28. K. Takahei and K. Kobayashi, J. Phys. Soc. Jpn. 44, 1850 (1978).

    Article  ADS  Google Scholar 

  29. A. Fujii and T. Kudou, J. Phys. Soc. Jpn. 64, 4493 (1995).

    Article  ADS  Google Scholar 

  30. P. V. Meiklyar, Physical Processes in the Formation of Latent Photographic Image (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  31. T. E. Kekhva, V. M. Belous, A. L. Kartuzhanskii, and B. T. Plachenov, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 1294 (1974).

    Google Scholar 

  32. A. P. Marchetti, M. S. Burberry, and J. P. Spoonhower, Phys. Rev. B 43, 2378 (1991).

    Article  ADS  Google Scholar 

  33. V. A. Sokolov and V. A. Tolstoi, Opt. Spektrosk. 18(2), 251 (1965).

    Google Scholar 

  34. M. S. Burberry and A. P. Marchetti, Phys. Rev. B 32, 1192 (1985).

    Article  ADS  Google Scholar 

  35. S. Sonoike, Jpn. J. Appl. Phys. 32, 3481 (1993).

    Article  ADS  Google Scholar 

  36. H. M. Smith, D. J. Philips, I. D. Sharp, J. W. Beeman, D. C. Chran, N. M. Hagel, E. E. Haller, G. Ciampi, H. Kim, and K. Shah, Appl. Phys. Lett. 100, 202102 (2012).

    Article  ADS  Google Scholar 

  37. I. M. Gazizov, in Proceedings of the Nuclear Science Symposium Conference (Knoxville, TN, IEEE, 2010), p. 3709.

    Google Scholar 

  38. I. M. Gazizov, unpublished (2010).

  39. M. Shorohov, L. Grigorjeva, and D. Millers, Nucl. Instrum. Methods Phys. Res. A 563, 78 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gazizov.

Additional information

Original Russian Text © I.M. Gazizov, V.M. Zaletin, A.V. Govorkov, M.S. Kuznetsov, I.S. Lisitsky, A.Ya. Polyakov, N.B. Smirnov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1153–1163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazizov, I.M., Zaletin, V.M., Govorkov, A.V. et al. Recombination and trapping centers in pure and doped TlBr crystals. Semiconductors 48, 1123–1133 (2014). https://doi.org/10.1134/S1063782614090103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090103

Keywords

Navigation