Skip to main content
Log in

Study of the influence of the sulfide and ultraviolet treatment of the n-i-GaAs surface on the parameters of ohmic contacts

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility of improving the parameters of AuGe/Ni- and Ge/Cu-based ohmic contacts to n-i-GaAs by modifying the preliminarily oxidized GaAs surface in a sulfide-containing solution, as well as via the effect of ultraviolet radiation generated with a KrCl excimer lamp on a chalcogenated surface, is studied. It is shown that preliminary oxidation of the n-i-GaAs surface with subsequent chalcogenation makes it possible to decrease the density of the surface states, to increase the reproducibility of the passivation of the surface, and to decrease the reduced contact resistance of the AuGe/Ni ohmic contacts by a factor of 1.5. The treatment of the chalcogenated surface of n-i-GaAs with an ultraviolet radiation with wavelength λ = 222 nm and emission power density W = 12 mW cm−2 performed in vacuum before the deposition of metal layers of the Ge/Cu ohmic contacts makes it possible to decrease the reduced contact resistance by 25–50% andimprove the morphological characteristics of the surface of the contact area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bessolov and M. V. Lebedev, Fiz. Tekh. Poluprovodn. 32, 11 (1998).

    Google Scholar 

  2. C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbinson, Appl. Phys. Lett. 54, 362 (1989).

    Article  ADS  Google Scholar 

  3. H.-C. Chiu, Y.-C. Huang, L.-B. Chang, and F.-T. Chein, Semicond. Sci. Technol. 23, 11 (2008).

    Google Scholar 

  4. H.-C. Chiu, IEEE Trans. Electron. Dev. 55, 3 (2008).

    Google Scholar 

  5. H.-C. Chiu, Y.-C. Huang, L.-B. Chang, and F.-T. Chien, Semicond. Sci. Technol. 23, 3 (2008).

    Google Scholar 

  6. H.-C. Chiu, Y.-C. Huang, C.-W. Chen, and L.-B. Chang, IEEE Trans. Electron. Dev. 55 (2008).

  7. H.-C. Chiu, L.-B. Chang, C.-W. Chen, Y.-J. Li, and Y.-J. Chan, Electrochem. Solid State Lett. 9, 10 (2006).

    Article  Google Scholar 

  8. C. J. Sandro, R. N. Nottenburg, J.-C. Bischo, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).

    Article  ADS  Google Scholar 

  9. M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, and S. P. Tobin, Appl. Phys. Lett. 52, 2157 (1988).

    Article  ADS  Google Scholar 

  10. J.-F. Fan, H. Oigawa, and Y. Nannichi, Jpn. J. Appl. Phys. 27, L1331 (1988).

    Article  ADS  Google Scholar 

  11. H. H. Lee, R. J. Racicot, and S. H. Lee, Appl. Phys. Lett. 54, 724 (1989).

    Article  ADS  Google Scholar 

  12. K. C. Hwang and S. S. Li, J. Appl. Phys. 67, 2162 (1990).

    Article  ADS  Google Scholar 

  13. Y. Wang, Y. Darici, and P. H. Holloway, J, Appl. Phys. 71, 2746 (1992).

    Article  ADS  Google Scholar 

  14. J. R. Waldrop, J. Vac. Sci. Technol. B 3, 1197 (1985).

    Article  Google Scholar 

  15. B. I. Sysoev, V. F. Antyushkin, and V. D. Strugin, Zh. Tekh. Fiz. 56, 913 (1986) [Sov. Tech. Phys. 31, 554 (1986)].

    Google Scholar 

  16. N. Barbouth, Y. Berthier, J. Oudar, J.-M. Moison, and M. Bensoussan, J. Electrochem. Soc. 133, 1663 (1986).

    Article  Google Scholar 

  17. L. Koenders, M. Blomacher, and W. Monch, J. Vac. Sci. Technol. B 6, 1416 (1988).

    Article  Google Scholar 

  18. L. Roberts, G. Hughes, B. Fennema, and M. Carbery, J. Vac. Sci. Technol. B 10, 1862 (1992).

    Article  Google Scholar 

  19. M. G. Nooney, V. Liberman, and R. M. Martin, J. Vac. Sci. Technol. A 13, 1837 (1995).

    Article  ADS  Google Scholar 

  20. G. Y. Gu, E. A. Ogryzlo, P. C. Wong, M. Y. Zhou, and K. A. R. Mitchell, J. Appl. Phys. 72, 762 (1992).

    Article  ADS  Google Scholar 

  21. R. S. Bhide, S. V. Bhoraskar, and V. J. Rao, J. Appl. Phys. 72, 1464 (1992).

    Article  ADS  Google Scholar 

  22. C. J. Sandro, R. N. Nottenburg, J.-C. Bischo, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).

    Article  ADS  Google Scholar 

  23. S.-Y. Cheng, S.-I. Fu, T.-P. Chen, P.-H. Lai, R.-C. Liu, K.-Y. Chu, L.-Y. Chen, and W.-C. Liu, IEEE Trans. Dev. Mater. Reliability 6, 4 (2006).

    Google Scholar 

  24. H. H. Berger, Solid State Electron. 15, 145 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kagadei.

Additional information

Original Russian Text © S.M. Avdeev, E.V. Erofeev, V.A. Kagadei, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 8, pp. 1056–1061.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, S.M., Erofeev, E.V. & Kagadei, V.A. Study of the influence of the sulfide and ultraviolet treatment of the n-i-GaAs surface on the parameters of ohmic contacts. Semiconductors 45, 1026–1031 (2011). https://doi.org/10.1134/S1063782611080033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611080033

Keywords

Navigation