Skip to main content
Log in

Charge spectroscopy of SiO2 layers with embedded silicon nanocrystals modified by irradiation with high-energy ions

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The method of charge deep-level transient spectroscopy (Q-DLTS) is used to study and compare the ejection of charge carriers from silicon nanocrystals (NCs) located in an ordered or random way in the SiO2 matrix. It is shown that, in all cases, this ejection is a thermally activated process. The parameters of energy barriers characterizing the processes of ejection of charge carriers from the levels of nanocrystals in the layers NCs:SiO2 before (random distribution) and after their modification by irradiation with high-energy ions (ordered distribution of nanocrystals) are determined. It is found that the activation energies for ejection of charge carriers from nanocrystals and the size of nanocrystals estimated from the difference between energies of two levels observed by the Q-DLTS method decrease as the ion fluence is increased. The density of nanocrystals observed by the Q-DLTS method decreases by approximately an order of magnitude as a result of irradiation with fluence of 1012–1013 cm−2 in comparison with an initial unirradiated structure; this decrease is due to formation of conducting chains of nanocrystals in tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fink, L. T. Chadderton, K. Hoppe, W. R. Fahrner, A. Chandra, and A. Kiv, Nucl. Instrum. Methods Phys. Res. B 261, 727 (2007).

    Article  ADS  Google Scholar 

  2. G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, Appl. Phys. Lett. 95, 043105 (2009).

    Article  ADS  Google Scholar 

  3. C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, Phys. Rev. B 67, 20101 (2003).

    Article  Google Scholar 

  4. S. Klaumunzer, Nucl. Instrum. Methods Phys. Res. B 244, 1 (2006).

    Article  ADS  Google Scholar 

  5. P. S. Chaughari, T. M. Bhave, R. Pasricha, F. Singh, D. Kanjilal, and S. V. Bhoraskar, Nucl. Instrum. Methods Phys. Res. B 239, 185 (2005).

    Article  ADS  Google Scholar 

  6. W. M. Arnoldbic, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, and F. H. P. M. Habraken, Phys. Rev. B 71, 125329 (2005).

    Article  ADS  Google Scholar 

  7. P. S. Chaughari, T. M. Bhave, D. Kanjilal, and S. V. Bhoraskar, J. Appl. Phys. 93, 3486 (2003).

    Article  ADS  Google Scholar 

  8. I. V. Antonova, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, Fiz. Tekh. Poluprovodn. 44, 501 (2010) [Semiconductors 44, 482 (2010)].

    Google Scholar 

  9. I. V. Antonova, M. B. Gulyaev, V. A. Volodin, A. G. Cherkov, D. V. Marin, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, Nanotechnology 20, 095205 (2009).

    Article  ADS  Google Scholar 

  10. I. V. Antonova, A. G. Cherkov, V. A. Skuratov, M. S. Kagan, J. Jedrzejewski, and I. Balberg, Nanotechnology 20, 185401 (2009).

    Article  ADS  Google Scholar 

  11. I. V. Antonova, D. V. Marin, V. A. Volodin, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, Solid State Phenomena 156–158, 523 (2009).

    Article  Google Scholar 

  12. I. V. Antonova, E. P. Neustroev, S. A. Smagulova, J. Jedrzejewski, and I. Balberg, J. Appl. Phys. 106, 064306 (2009).

    Article  ADS  Google Scholar 

  13. A. Sa’ar, Y. Reichman, M. Dovrat, D. Krapf, J. Jedrzejewski, and I. Balberg, Nano Lett. 5, 2443 (2005).

    Article  ADS  Google Scholar 

  14. I. V. Antonova, S. S. Shaimeev, and S. A. Smagulova, Fiz. Tekh. Poluprovodn. 40, 557 (2006) [Semiconductors 40, 543 (2006)].

    Google Scholar 

  15. A. Meftah, Phys. Rev. Lett. 48, 920 (1993).

    ADS  Google Scholar 

  16. A. S. Moskalenko, J. Beracdar, A. A. Procofiev, and I. N. Yassievich, Phys. Rev. B 76, 085427 (2007).

    Article  ADS  Google Scholar 

  17. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, Nature Nanotechnol. 3, 174 (2008).

    Article  ADS  Google Scholar 

  18. G. Rizza, Y. Ramjauni, T. Gacoin, L. Vieille, and S. Henry, Phys. Rev. B 76, 245414 (2007).

    Article  ADS  Google Scholar 

  19. G. Rizza, H. Chevery, T. Gacoin, A. Lamasson, and S. Henry, J. Appl. Phys. 101, 014321 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Antonova.

Additional information

Original Russian Text © I.V. Antonova, S.A. Smagulova, E.P. Neustroev, V.A. Skuratov, J. Jedrzejewski, E. Savir, I. Balberg, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 5, pp. 591–595.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, I.V., Smagulova, S.A., Neustroev, E.P. et al. Charge spectroscopy of SiO2 layers with embedded silicon nanocrystals modified by irradiation with high-energy ions. Semiconductors 45, 582–586 (2011). https://doi.org/10.1134/S1063782611050034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611050034

Keywords

Navigation