Skip to main content
Log in

Dependence on Laser Pulse Duration of the Maximum Energy of Protons Accelerated by Intense “Slow Light”

  • LASER PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Three-dimensional numerical simulations were used to study the dependence of maximum energy of ions (protons) accelerated from low-density targets on the duration of the accelerating femtosecond laser pulse at its given total energy which, in particular, is important due to the latest achievements in the so-called postcompression of laser pulses to very short durations. It was shown that an optimum pulse length exists, which leads to maximum proton energy acquired in the regime of their maximum efficient synchronized acceleration by the “slow light” (A. V. Brantov et al., Phys. Rev. Lett. 116, 085004 (2016) [1]) and that the ultra shortening of the laser pulse does not lead to the increase in the maximum ion energy despite the increased intensity of laser light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Brantov, E. A. Govras, V. F. Kovalev, and V. Yu. Bychenkov, Phys. Rev. Lett. 116, 085004 (2016). https://doi.org/10.1103/PhysRevLett.116.085004

  2. V. Yu. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokonnikov, J. Exp. Theor. Phys. 88, 1137 (1999).

    Article  ADS  Google Scholar 

  3. C. Labaune, C. Baccou, V. Yahia, C. Neuville, and J. Rafelski, Sci. Rep. 6, 21202 (2016).

    Article  ADS  Google Scholar 

  4. L. Willingale, G. M. Petrov, A. Maksimchuk, J. Davis, R. R. Freeman, A. S. Joglekar, T. Matsuoka, C. D. Murphy, V. M. Ovchinnikov, A. G. R. Thomas, L. Van Woerkom, and K. Krushelnick, Phys. Plasmas 18, 083106 (2011).

  5. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, et al., Phys. Rev. Lett. 110, 044802 (2013).

  6. S. V. Bulanov and V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002).

    Article  ADS  Google Scholar 

  7. U. Linz and J. Alonso, Phys. Rev. Accel. Beams 19, 124802 (2016).

  8. K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, and V. Yu. Bychenkov, Appl. Phys. Lett. 78, 595 (2001).

    Article  ADS  Google Scholar 

  9. V. Yu. Bychenkov, A. V. Brantov, and G. Mourou, Laser Part. Beams 32, 605 (2014).

    Article  ADS  Google Scholar 

  10. M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. MacKinnon, L. A. Gizzi, M. Galimberti, R. J. Clarke, and H. Ruhl, Plasma Phys. Control. Fusion 43, A267 (2001).

    Article  ADS  Google Scholar 

  11. J. A. Cobble, R. P. Johnson, T. E. Cowan, N. Renard-Le Galloudec, and M. Allen, J. Appl. Phys. 92, 1775 (2002).

    Article  ADS  Google Scholar 

  12. H.-S. Park, D. D. Ryutov, J. S. Ross, N. L. Kugland, S. H. Glenzer, C. Plechaty, S. M. Pollaine, B. A. Remington, A. Spitkovsky, L. Gargate, G. Gregori, A. Bell, C. Murphy, Y. Sakawa, Y. Kuramitsu, et al., High Energy Density Phys. 8, 38 (2012).

    Article  ADS  Google Scholar 

  13. S. Yu. Mironov, J. A. Wheeler, E. A. Khazanov, and G. A. Mourou, Opt. Lett. 46, 4570 (2021). https://doi.org/10.1364/OL.438154

    Article  ADS  Google Scholar 

  14. V. Ginzburg, I. Yakovlev, A. Kochetkov, A. Kuzmin, S. Mironov, I. Shaikin, A. Shaykin, and E. Khazanov, Opt. Express 29, 28297 (2021). https://doi.org/10.1364/OE.434216

    Article  ADS  Google Scholar 

  15. A. V. Brantov and V. Yu. Bychenkov, Phys. Plasmas 28, 063106 (2021). https://doi.org/10.1063/5.0048024

  16. V. Yu. Bychenkov, E. A. Govras, and A. V. Brantov, JETP Lett. 104, 618 (2016). https://doi.org/10.1134/S0021364016210086

    Article  ADS  Google Scholar 

  17. C. D. Decker, W. B. Mori, K.-C. Tzeng, and T. Katsouleas, Phys. Plasmas 3, 2047 (1996).

    Article  ADS  Google Scholar 

  18. V. Yu. Bychenkov, M. G. Lobok, V. F. Kovalev, and A. V. Brantov, Plasma Phys. Control. Fusion 61, 124004 (2019). https://doi.org/10.1088/1361-6587/ab5142

  19. A. V. Brantov, E. A. Obraztsova, A. L. Chuvilin, E. D. Obraztsova, and V. Yu. Bychenkov, Phys. Rev. Accel. Beams 20, 061301 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.061301

  20. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research under the RFBR–ROSATOM grant no. 20-21-00023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Brantov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantov, A.V., Bychenkov, V.Y. Dependence on Laser Pulse Duration of the Maximum Energy of Protons Accelerated by Intense “Slow Light”. Plasma Phys. Rep. 48, 585–590 (2022). https://doi.org/10.1134/S1063780X22700192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22700192

Keywords:

Navigation